留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料螺栓连接的增强设计与分析研究进展

山美娟 赵丽滨

山美娟, 赵丽滨. 复合材料螺栓连接的增强设计与分析研究进展[J]. 复合材料学报, 2023, 40(7): 3771-3784. doi: 10.13801/j.cnki.fhclxb.20221123.002
引用本文: 山美娟, 赵丽滨. 复合材料螺栓连接的增强设计与分析研究进展[J]. 复合材料学报, 2023, 40(7): 3771-3784. doi: 10.13801/j.cnki.fhclxb.20221123.002
SHAN Meijuan, ZHAO Libin. Research progress in reinforcement design and analysis of composite bolted joints[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3771-3784. doi: 10.13801/j.cnki.fhclxb.20221123.002
Citation: SHAN Meijuan, ZHAO Libin. Research progress in reinforcement design and analysis of composite bolted joints[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3771-3784. doi: 10.13801/j.cnki.fhclxb.20221123.002

复合材料螺栓连接的增强设计与分析研究进展

doi: 10.13801/j.cnki.fhclxb.20221123.002
基金项目: 国家自然科学基金(12072005);河北省全职引进高端人才科研项目(2021HBQZYCSB009)
详细信息
    通讯作者:

    山美娟,博士,讲师,硕士生导师,研究方向为复合材料连接结构的失效机理及强度分析方法 E-mail: mjshan@bjtu.edu.cn

  • 中图分类号: V214.8

Research progress in reinforcement design and analysis of composite bolted joints

Funds: National Natural Science Foundation of China (12072005); Project of High-Level Talents Introduction of Hebei Province (2021HBQZYCSB009)
  • 摘要: 螺栓连接是复合材料结构的薄弱环节,决定了整个结构的承载能力。对复合材料螺栓连接进行增强设计可显著提升复合材料的应用效率。为此,国内外研究者们发展了复合材料螺栓连接的整体或局部增强设计方法,并采用试验和数值模拟方法对这些设计的增强效果进行了评估。部分增强设计方法已应用于国外先进航空航天飞行器的设计中。本文首先对现有的复合材料螺栓连接增强设计方法进行归类及详细总结,并对增强效果的评估方法进行分析,最后总结存在的问题,并提出未来的发展方向。

     

  • 图  1  碳纤维增强聚合物 (CFRP)复合材料和金属螺栓连接的效率 [6]

    Figure  1.  Efficiency of carbon fiber reinforced polymer (CFRP) composite and metal bolted joints (BJ) [6]

    图  2  复合材料螺栓连接示意图

    Figure  2.  Schematic diagram of composite bolted joints

    w—Width of the laminate; L—Length of the laminate; e—End distance of the lamiante; Sw—Edge distance of the laminate

    图  3  复合材料螺栓连接的主要失效模式

    Figure  3.  Main failure modes of composite bolted joints

    P—External load

    图  4  挤压失效机制的示意图[8]:(a) 挤压损伤;(b) 有横向约束的损伤(垫圈区域内);(c) 无横向约束的损伤(垫圈区域外)

    Figure  4.  Schematic diagram of the bearing failure mechanism[8]: (a) Crushing damage; (b) Damage within lateral constraint (Inside-washer region); (c) Damage without lateral constraint (Outside-washer region)

    图  5  通过预埋金属套筒或嵌装螺母增强的复合材料螺栓连接

    Figure  5.  Composite bolted joints improved by adding metal inserts or embedding bolts

    图  6  采用金属套筒增强的碳纤维/环氧树脂(CF/EP)复合材料螺栓连接的失效载荷的对比

    Figure  6.  Comparison between failure loads of carbon fiber/epoxy resin (CF/EP) composite bolted joints improved with metal inserts

    ST—Steel

    图  7  新型金属套筒示意图

    Figure  7.  Schematic diagram of the novel metal inserts

    图  8  通过嵌入金属套筒进行CF/EP复合材料螺栓连接的增强设计方案 [16]

    Figure  8.  Improvement design scheme of CF/EP composite bolted joints by embedding metal inserts [16]

    LOS—Line of symmetry

    图  9  通过局部添加薄层或凸台增强的复合材料螺栓连接

    Figure  9.  Composite bolted joints improved by locally adding foils or rings

    图  10  通过局部添加薄层增强的玻璃纤维/聚乙烯(GF/PE)复合材料螺栓连接的失效载荷的对比

    Figure  10.  Comparisons between failure loads of fiber glass/polyethylene (GF/PE) composite bolted joints improved with locally-added foils

    图  11  外部添加玻璃纤维增强聚合物(GFRP)薄层对GF/聚对苯二甲酸乙二醇酯(PET)复合材料螺栓连接的增强效果

    Figure  11.  Strengthening effects of outer glass fiber reinforced polymer (GFRP) foils on GF/polyethylene terephthalate (PET) composite bolted joints

    CSM—Chopped strand mat, in which the short fibers are oriented in various undefined directions

    图  12  通过整体添加金属薄层增强的复合材料螺栓连接

    Figure  12.  Composite bolted joints improved by globally adding metal foils

    图  13  钛含量对CF/EP复合材料螺栓连接的比强度的影响[27]

    Figure  13.  Influence of titanium content on specific strength of CF/EP composite bolted joints[27]

    图  14  通过局部替换金属薄层增强的复合材料螺栓连接

    Figure  14.  Composite bolted joints improved by local substitution with metal foils

    图  15  钛含量对局部替换钛薄层增强的CF/EP复合材料螺栓连接强度的影响

    Figure  15.  Influence of titanium content on the strength of CF/EP composite bolted joints improved by local substitution with titanium foils

    图  16  通过添加转向纤维层增强的复合材料螺栓连接

    Figure  16.  Composite bolted joints improved by adding layers with steered fibers

    图  17  通过局部添加z-pin增强的复合材料螺栓连接

    Figure  17.  Composite bolted joints improved by locally adding z-pin

    图  18  通过添加防御孔增强的复合材料螺栓连接

    Figure  18.  Composite bolted joints improved by adding a defense hole

    图  19  防御孔位置和直径对不同宽径比w/D、端径比e/D的复合材料螺栓连接强度的影响 [45]

    Figure  19.  Influence of location and diameter of defense hole on the strength of composite bolted joints with different w/D and e/D values [45]

    A—SDH=1.5D, dDH=0.625D; B—SDH=1.5D, dDH=0.75D; C—SDH=2.0D, dDH=0.625D; D—SDH=2.0D, dDH=0.75D; E—SDH=2.5D, dDH=0.625D; F—SDH=2.5D, dDH=0.75D; SDH—Distance from center of defense hole to center of bolt hole; dDH—Diameter of defense hole; D—Diameter of bolt hole; w/D—Ratio of width to hole diameter of laminate; e/D—Ratio of end distance to hole diameter of laminate

    图  20  碳纳米管桥接的基体裂纹[47]

    Figure  20.  Carbon nanotube bridging matrix cracks[47]

    图  21  多壁碳纳米管(MWCNT)含量对CF/EP复合材料拉伸特性的影响 [49]

    Figure  21.  Influence of multiwalled carbon nanotube (MWCNT) content on tensile properties of CF/EP composites [49]

    图  22  拧紧力矩和老化时间对增强效果的影响

    Figure  22.  Strengthening effect affected by the torque and aging time

    图  23  老化温度和老化时间对增强效果的影响

    Figure  23.  Strengthening effect affected by aging temperature and aging time

    图  24  碳纳米管含量对复合材料螺栓连接强度的影响

    Figure  24.  Influence of carbon nanotube content on strength of composite bolted joints

    图  25  通过局部添加纳米材料增强的复合材料螺栓连接

    Figure  25.  Composite bolted joints improved by locally adding nano materials

    图  26  不同复合材料机械连接的失效载荷和比强度[59]

    Figure  26.  Failure loads and specific strengths of different composite mechanical joints[59]

    a—FRTP rivet joint (Vf=30vol%); b—FRTP rivet joint (Vf=50vol%); c—FRTP rivet joint (Vf=60vol%); d—Aluminum blind-riveted joint; e—Steel bolted joint

    图  27  钛合金高锁紧固件和CF/聚醚醚酮(PEEK)复合材料铆钉的对比[61]

    Figure  27.  Comparison between titanium Hi-Lite fastener and CF/poly(ether-ether-ketone) (PEEK) composite rivet[61]

    SS—Stainless-steel; Ø—Diameter

    图  28  不同铆钉连接的失效模式[62]

    Figure  28.  Failure mode of different riveted joints[62]

    图  29  3D打印螺栓的制造过程[63]

    Figure  29.  Manufacturing process of the 3D-printed fastener[63]

  • [1] MCCARTHY M. BOJCAS: Bolted joints in composite aircraft structures[J]. Air & Space Europe,2001,3(3-4):139-142. doi: 10.1016/S1290-0958(01)90077-2
    [2] ATAS A, SOUTIS C. Damage and failure analysis of bolted joints in composite laminates[M]. Heidelberg: Springer, 2017: 591-644.
    [3] SHISHESAZ M, HOSSEINI M. A review on stress distribution, strength and failure of bolted‎ composite joints[J]. Journal of Computational Applied Mechanics,2018,49(2):415-429.
    [4] BELARDI V G, FANELLI P, VIVIO F. Analysis of multi-bolt composite joints with a user-defined finite element for the evaluation of load distribution and secondary bending[J]. Composites Part B: Engineering,2021,227:109378. doi: 10.1016/j.compositesb.2021.109378
    [5] WANG J, QIN T, MEKALA N R, et al. Three-dimensional progressive damage and failure analysis of double-lap composite bolted joints under quasi-static tensile loading[J]. Composite Structures,2022,285:115227. doi: 10.1016/j.compstruct.2022.115227
    [6] FINK A. Local metal hybridization of composite bolted joints[M]. Heidelberg: Springer, 2013: 251-262.
    [7] MANGALGIRI P D. Design allowable considerations for use of laminated composites in aircraft structures[J]. Journal of the Indian Institute of Science,2013,93(4):571-592.
    [8] XIAO Y, ISHIKAWA T. Bearing strength and failure behavior of bolted composite joints (Part I: Experimental investigation)[J]. Composites Science and Technology,2005,65(7-8):1022-1031. doi: 10.1016/j.compscitech.2005.02.011
    [9] GALIŃSKA A. Mechanical joining of fibre reinforced polymer composites to metals—A review. Part I: Bolted joining[J]. Polymers,2020,12(10):2252. doi: 10.3390/polym12102252
    [10] WU P S, SUN C T. Modeling bearing failure initiation in pin-contact of composite laminates[J]. Mechanics of Materials,1998,29(3-4):325-335. doi: 10.1016/S0167-6636(98)00019-2
    [11] LIU F, YAO W, SHI X, et al. Bearing failure optimization of composite double-lap bolted joints based on a three-step strategy marked by feasible region reduction and model decoupling[J]. Computers, Materials & Continua,2020,62(2):977-999.
    [12] CAO Y, ZUO D, ZHAO Y, et al. Experimental investigation on bearing behavior and failure mechanism of double-lap thin-ply composite bolted joints[J]. Composite Structures,2021,261:113565. doi: 10.1016/j.compstruct.2021.113565
    [13] NILSSON S. Increasing strength of graphite/epoxy bolted joints by introducing an adhesively bonded metallic insert[J]. Journal of Composite Materials,1989,23(7):642-650. doi: 10.1177/002199838902300701
    [14] CAMANHO P P, TAVARES C M L, DE OLIVEIRA R, et al. Increasing the efficiency of composite single-shear lap joints using bonded inserts[J]. Composites Part B: Engineering,2005,36(5):372-383. doi: 10.1016/j.compositesb.2005.01.007
    [15] 邢立峰, 曹安港, 毕凤阳, 等. 纤维增强复合材料螺栓连接性能试验研究[J]. 舰船科学技术, 2018, 40(3):102-105. doi: 10.3404/j.issn.1672-7649.2018.03.018

    XING Lifeng, CAO Angang, BI Fengyang, et al. An experimental study on bolt joint performance of fiber reinforced composite materials[J]. Ship Science and Technology,2018,40(3):102-105(in Chinese). doi: 10.3404/j.issn.1672-7649.2018.03.018
    [16] AKBARPOUR S, HALLSTRÖM S. Reinforcement around holes in composite materials by use of patched metal inserts[J]. Composite Structures,2019,225:111084. doi: 10.1016/j.compstruct.2019.111084
    [17] AKBARPOUR S, HALLSTRÖM S. Strength improvement of bolted joints in composite materials by use of patched metal inserts[J]. Composite Structures,2020,252:112628. doi: 10.1016/j.compstruct.2020.112628
    [18] AKBARPOUR S, HALLSTRÖM S. Enhancing the performance of bolted joints in composites by use of patched steel or titanium inserts[J]. Composite Structures,2021,275:114464. doi: 10.1016/j.compstruct.2021.114464
    [19] AKBARPOUR S. Enhanced composite joint performance through interlacement of metal inserts[D]. Stockholm: KTH Royal Institute of Technology, 2021.
    [20] XU G, ZHANG K, CHENG H, et al. An experimental study on mechanical behavior and failure mechanism of sleeved fasteners and conventional bolt for composite interference-fit joints[J]. Thin-Walled Structures,2022,170:108537. doi: 10.1016/j.tws.2021.108537
    [21] MARA V, HAGHANI R, AL-EMRANI M. Improving the performance of bolted joints in composite structures using metal inserts[J]. Journal of Composite Materials,2016,50(21):3001-3018. doi: 10.1177/0021998315615204
    [22] 王国杰. 长玻纤增强聚氨酯反应注射成型复合材料螺栓连接性能研究[D]. 南京: 南京理工大学, 2013.

    WANG Guojie. Performance investigations on long fiber reinforced polyurethane reaction injection molding composite bolted joints[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese).
    [23] RISPLER A R, STEVEN G P, TONG L. Photoelastic evaluation of metallic inserts of optimised shape[J]. Composites Science and Technology,2000,60(1):95-106. doi: 10.1016/S0266-3538(99)00107-4
    [24] 章继峰, 谢永刚, 张璐. 接头局部增强的复合材料层合板螺栓连接试验与数值模拟[J]. 复合材料学报, 2013, 30(6):191-196. doi: 10.3969/j.issn.1000-3851.2013.06.028

    ZHANG Jifeng, XIE Yonggang, ZHANG Lu. Experimental and numerical simulation of composite laminates bolted joints with local reinforcement[J]. Acta Materiae Compositae Sinica,2013,30(6):191-196(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.028
    [25] VIET N P, YORESTA F S, KITANE Y, et al. Improving the shear strength of bolted connections in pultruded GFRP using glass fiber sheets[J]. Composite Structures,2021,255:112896. doi: 10.1016/j.compstruct.2020.112896
    [26] MUC A, ULATOWSKA A. Local fibre reinforcement of holes in composite multilayered plates[J]. Composite Structures,2012,94(4):1413-1419. doi: 10.1016/j.compstruct.2011.11.017
    [27] KOLESNIKOV B, HERBECK L, FINK A. CFRP/titanium hybrid material for improving composite bolted joints[J]. Composite Structures,2008,83(4):368-380. doi: 10.1016/j.compstruct.2007.05.010
    [28] FINK A, CAMANHO P P. Reinforcement of composite bolted joints by means of local metal hybridization[M]. Cambridge: Woodhead, 2011: 3-34.
    [29] CAMANHO P P, FINK A, OBST A, et al. Hybrid titanium-CFRP laminates for high-performance bolted joints[J]. Composites Part A: Applied Science and Manufacturing,2009,40(12):1826-1837. doi: 10.1016/j.compositesa.2009.02.010
    [30] FINK A, CAMANHO P P, ANDRÉS J M, et al. Hybrid CFRP/titanium bolted joints: Performance assessment and application to a spacecraft payload adaptor[J]. Composites Science and Technology,2010,70(2):305-317. doi: 10.1016/j.compscitech.2009.11.002
    [31] KOLKS G, TSERPES K I. Efficient progressive damage modeling of hybrid composite/titanium bolted joints[J]. Composites Part A: Applied Science and Manufacturing,2014,56:51-63. doi: 10.1016/j.compositesa.2013.09.011
    [32] FINK A, SOPHABMIXAY S, DUMARS W. Development of an improved surface preparation for titanium bonding and titanium graphite laminates for aircraft and space vehicle applications[C]. AIRTEC 5th International Conference. Frankfurt, 2010: 1-8.
    [33] BREWER J S, PALAZOTTO A N, FEIE J, et al. Bearing response characterization in bolted hybrid composite joints[C]. AIAA Scitech 2020 Forum. Orlando, 2020: 1928.
    [34] ALI A, PAN L, DUAN L, et al. Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications[J]. Composite Structures,2016,158:199-207. doi: 10.1016/j.compstruct.2016.09.037
    [35] LI R, KELLY D, CROSKY A. Strength improvement by fibre steering around a pin loaded hole[J]. Composite Structures,2002,57(1-4):377-383. doi: 10.1016/S0263-8223(02)00105-8
    [36] LI R, KELLY D, CROSKY A, et al. Improving the efficiency of fiber steered composite joints using load path trajectories[J]. Journal of Composite Materials,2006,40(18):1645-1658. doi: 10.1177/0021998306060168
    [37] LEGRAND X, CROSKY A, KELLY D, et al. Optimisation of fibre steering in composite laminates using a genetic algorithm[J]. Composite Structures,2006,75:524-531. doi: 10.1016/j.compstruct.2006.04.067
    [38] BARDY J, LEGRAND X, CROSKY A. Configuration of a genetic algorithm used to optimise fibre steering in composite laminates[J]. Composite Structures,2012,94(6):2048-2056. doi: 10.1016/j.compstruct.2011.12.019
    [39] CROSKY A, KELLY D, LI R, et al. Improvement of bearing strength of laminated composites[J]. Composite Structures,2006,76(3):260-271. doi: 10.1016/j.compstruct.2006.06.036
    [40] HUONG T P N. Improvement of bearing strength of laminated composites by nanoclay and z-pin reinforcement[D]. Sydney: University of New South Wales, 2006.
    [41] LI R, HUONG N, CROSKY A, et al. Improving bearing performance of composite bolted joints using z-pins[J]. Composites Science and Technology,2009,69(7-8):883-889. doi: 10.1016/j.compscitech.2008.12.005
    [42] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2007,38(12):2383-2397. doi: 10.1016/j.compositesa.2007.08.016
    [43] SCHORNSTEIN B, STASCHKO R, FUCHS N, et al. Manufacturing principles for z-pin reinforced FRP composite laminates in the case of bolted joints[J]. Lightweight Design Worldwide,2017,10(3):28-33. doi: 10.1007/s41777-017-0025-1
    [44] AKOUR S N, AL-HUSBAN M. Design and optimization of defense hole system for biaxial-loaded composite laminates[J]. Proceedings of the Institution of Mechanical Engineers: Part L — Journal of Materials: Design and Applications, 2017, 231(3): 272-284.
    [45] OTHMAN A R, JADEE K J, ISMADI M Z. Mitigating stress concentration through defense hole system for improvement in bearing strength of composite bolted joint, Part I: Numerical analysis[J]. Journal of Composite Materials,2017,51(26):3685-3699. doi: 10.1177/0021998317692396
    [46] WICKS S S, VILLORIA R G, WARDLE B L. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes[J]. Composites Science and Technology,2010,70(1):20-28. doi: 10.1016/j.compscitech.2009.09.001
    [47] TÜZEMEN M Ç, SALAMCI E, AVCI A. Enhancing mechanical properties of bolted carbon/epoxy nanocomposites with carbon nanotube, nanoclay, and hybrid loading[J]. Composites Part B: Engineering,2017,128:146-154. doi: 10.1016/j.compositesb.2017.07.001
    [48] KUMAR M, SAINI J S, BHUNIA H. Investigations on the strength of mechanical joints prepared from carbon fiber laminates with addition of carbon nanotubes[J]. Journal of Mechanical Science and Technology,2020,34(3):1059-1070. doi: 10.1007/s12206-020-0208-2
    [49] KUMAR M, SAINI J S, BHUNIA H, et al. Aging of bolted joints prepared from electron-beam-cured multiwalled carbon nanotube-based nanocomposites with variable torques[J]. Polymer Composites,2021,42:4082-4104. doi: 10.1002/pc.26119
    [50] KUMAR M, SAINI J S, BHUNIA H. Investigations on MWCNT embedded carbon/epoxy composite joints subjected to hygrothermal aging under bolt preloads[J]. Fibers and Polymers,2021,22:1957-1975. doi: 10.1007/s12221-021-0834-z
    [51] KUMAR M, SAINI J S, BHUNIA H, et al. Behavior of mechanical joints prepared from EB cured CFRP nanocomposites subjected to hygrothermal aging under bolt preloads[J]. Applied Composite Materials,2021,28(2):271-296. doi: 10.1007/s10443-020-09864-w
    [52] GENEDY M, CHENNAREDDY R, SOLIMAN E M, et al. Improving shear strength of bolted joints in pultruded glass fiber reinforced polymer composites using carbon nanotubes[J]. Journal of Reinforced Plastics and Composites,2017,36(13):958-971. doi: 10.1177/0731684417697827
    [53] ALUKO O. Effect of graphene on mechanical performance of pin-loaded circular hole in laminated composites[C]. ASME International Mechanical Engineering Congress and Exposition. Pittsburgh, 2018: 52149.
    [54] KAYBAL H B, ULUS H, ESKIZEYBEK V, et al. An experimental study on low velocity impact performance of bolted composite joints part 1: Influence of halloysite nanotubes on dynamic loading response[J]. Composite Structures,2021,258:113415. doi: 10.1016/j.compstruct.2020.113415
    [55] KAYBAL H B, ULUS H, AVCI A. Seawater aged basalt/epoxy composites: Improved bearing performance with halloysite nanotube reinforcement[J]. Fibers and Polymers,2021,22(6):1643-1652. doi: 10.1007/s12221-021-0671-0
    [56] HU J, ZHANG K, YANG Q, et al. An experimental study on mechanical response of single-lap bolted CFRP composite interference-fit joints[J]. Composite Structures,2018,196:76-88. doi: 10.1016/j.compstruct.2018.05.016
    [57] LIU Y, LI M, LU X, et al. Pull-out performance and optimization of a novel Interference-fit rivet for composite joints[J]. Composite Structures,2021,269:114041. doi: 10.1016/j.compstruct.2021.114041
    [58] HU J, ZHANG K, CHENG H, et al. An experimental investigation on interfacial behavior and preload response of composite bolted interference-fit joints under assembly and thermal conditions[J]. Aerospace Science and Technology,2020,103:105917. doi: 10.1016/j.ast.2020.105917
    [59] UEDA M, UI N, OHTANI A. Lightweight and anti-corrosive fiber reinforced thermo-plastic rivet[J]. Composite Structures,2018,188:356-362. doi: 10.1016/j.compstruct.2018.01.040
    [60] FORTIER V, BRUNEL J E, LEBEL L L. Fastening composite structures using braided thermoplastic composite rivets[J]. Journal of Composite Materials,2020,54(6):801-812. doi: 10.1177/0021998319867375
    [61] ABSI C, ALSINANI N, LEBEL L L. Carbon fiber reinforced poly (ether ether ketone) rivets for fastening composite structures[J]. Composite Structures,2022,280:114877. doi: 10.1016/j.compstruct.2021.114877
    [62] YAO C, QI Z, CHEN W, et al. Experimental study on CF/PEEK thermoplastic fastener: Effects of fastener matrix crystallinity and fibre content on the strength of single-lap joint[J]. Composites Part B: Engineering,2021,213:108737. doi: 10.1016/j.compositesb.2021.108737
    [63] LI W, GUO S, GIANNOPOULOS I K, et al. 3D-printed thermoplastic composite fasteners for single lap joint reinforcement[J]. Composite Structures,2022,282:115085. doi: 10.1016/j.compstruct.2021.115085
    [64] LI W, GUO S, LIU Y, et al. Structure health monitoring of composites joint reinforced by acoustic emission based smart composite fasteners[J]. Composites Communications,2022,33:101213. doi: 10.1016/j.coco.2022.101213
    [65] SAJID Z, KARUPPANAN S, KEE K E, et al. Carbon/basalt hybrid composite bolted joint for improved bearing performance and cost efficiency[J]. Composite Structures,2021,275:114427. doi: 10.1016/j.compstruct.2021.114427
    [66] SAJID Z, KARUPPANAN S, KEE K E, et al. Bearing performance improvement of single-lap, single-bolt basalt composite joints by locally strengthening the joint location using carbon fibre[J]. Thin-Walled Structures,2022,180:109873. doi: 10.1016/j.tws.2022.109873
    [67] SHAMAEI-KASHANI A R, SHOKRIEH M M. An analytical approach to predict the mechanical behavior of single-lap single-bolt composite joints reinforced with carbon nanofibers[J]. Composite Structures,2019,215:116-126. doi: 10.1016/j.compstruct.2019.02.055
    [68] 陈坤, 舒茂盛, 胡仁伟, 等. 带衬套沉头螺栓复合材料/金属接头拉伸性能[J]. 北京航空航天大学学报, 2019, 45(3):633-640. doi: 10.13700/j.bh.1001-5965.2018.0412

    CHEN Kun, SHU Maosheng, HU Renwei, et al. Tensile performance of countersunk bolted composite/metal joints with sleeve[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(3):633-640(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0412
    [69] XU G, CHENG H, ZHANG K, et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Materials & Design,2020,194:108904.
    [70] XU G, ZHANG K, CHENG H, et al. An efficient physically-based damage model for interface damage of composites sleeved interference joint and influence analysis of its interface friction[J]. Composite Structures,2021,275:114425. doi: 10.1016/j.compstruct.2021.114425
  • 加载中
图(29)
计量
  • 文章访问数:  1140
  • HTML全文浏览量:  549
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-10
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回