留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机织T字型加筋板复合材料的抗低速冲击性能

秦卓 魏小玲 胡晗 欧阳屹伟 谢军波 龚小舟

秦卓, 魏小玲, 胡晗, 等. 机织T字型加筋板复合材料的抗低速冲击性能[J]. 复合材料学报, 2023, 40(6): 3673-3682. doi: 10.13801/j.cnki.fhclxb.20220907.006
引用本文: 秦卓, 魏小玲, 胡晗, 等. 机织T字型加筋板复合材料的抗低速冲击性能[J]. 复合材料学报, 2023, 40(6): 3673-3682. doi: 10.13801/j.cnki.fhclxb.20220907.006
QIN Zhuo, WEI Xiaoling, HU Han, et al. Low velocity impact resistance of woven fabric reinforced T-shaped composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3673-3682. doi: 10.13801/j.cnki.fhclxb.20220907.006
Citation: QIN Zhuo, WEI Xiaoling, HU Han, et al. Low velocity impact resistance of woven fabric reinforced T-shaped composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3673-3682. doi: 10.13801/j.cnki.fhclxb.20220907.006

机织T字型加筋板复合材料的抗低速冲击性能

doi: 10.13801/j.cnki.fhclxb.20220907.006
详细信息
    通讯作者:

    龚小舟,博士,副教授,硕士生导师,研究方向为三维立体纺织织造 E-mail: 1493643391@qq.com

  • 中图分类号: TB332

Low velocity impact resistance of woven fabric reinforced T-shaped composites

  • 摘要: 为解决当前T字型铺层复合材料抗层间剪切能力弱的问题,通过对复合材料预制件织造工艺进行合理设计,使用SGA598小样织机织造了T字型织物,采用真空辅助树脂传递模塑(VARTM)工艺将其制备成复合材料,并研究其在低速冲击下的抗冲击性能;使用有限元软件ABAQUS建立了几何与材料模型,模拟了不同冲击能量下的冲击响应过程。研究结果表明,T字型加筋板具有较高的抗冲击能力,模拟结果与实验测试结果吻合较好,该有限元模型具有较好的可靠性。

     

  • 图  1  T字型加筋板径向截面示意图

    Figure  1.  Warp section schematic diagram of T-shaped stiffened plate

    H—Total height of fabric; H1—Rib height of the stiffened plate; H2—Floor height; L—Bar width

    图  2  T字型加筋板试样

    Figure  2.  T-shaped stiffened plate specimen

    图  3  T字型加筋板截面与纱线屈曲状态

    Figure  3.  Warp section schematic diagram of T-shaped stiffened and yarn buckling state

    图  4  不同冲击能量下T型加筋板载荷峰值

    Figure  4.  Peak load of T-stiffened plate under different impact energies

    图  5  T型加筋板载荷-时间曲线

    Figure  5.  Load-time curves of T-stiffened plate

    图  6  T型加筋板吸收能量-时间曲线

    Figure  6.  Absorb energy-time curves of T-stiffened plate

    图  7  T型加筋板1/4冲击载荷与边界条件模型

    Figure  7.  1/4 impact load and boundary condition model of T-stiffened plate

    图  8  基体-纤维局部坐标系

    Figure  8.  Matrix-fiber local coordinate system

    图  9  宏观模型织物单胞结构

    Figure  9.  Macro-scale model fabric cell structure

    图  10  纱线局部坐标与单胞全局坐标

    Figure  10.  Yarn local coordinates and unit cell global coordinates

    W—Unit cell width; L—Unit cell length; L1—Weft width; L2—Binding width; W1—Warp width; W2—Binding length; H1—Weft height; H2—Warp height

    图  11  试验与有限元模拟(FEM)的机织T型加筋板载荷-时间曲线

    Figure  11.  Test and finite element modelling (FEM) load-time curves of woven T-stiffened plate

    EX—Text

    图  12  试验与FEM的机织T型加筋板收能量-时间曲线

    Figure  12.  Absorb energy-time curves of test and FEM of woven T-stiffened plate

    图  13  机织T型加筋板试验与有限元模拟冲击正面、背面图

    Figure  13.  Front and back view of impact of experiment and FEM of woven T-stiffened plate

    表  1  环氧树脂JC-03 A的规格和性能

    Table  1.   Specifications and properties of epoxy resin JC-03 A

    Material functionNumerical value
    Density/(g·cm−3)1.12-1.14
    Tensile strength/MPa80
    Tensile modulus/MPa2400
    Bend strength/MPa130
    Flexural modulus/MPa3500
    Curing time/h5-7
    Thermal expansion coefficient/(10−6 −1)37
    Curing temperature/℃70
    下载: 导出CSV

    表  2  T型加筋板复合材料规格

    Table  2.   Specifications of T-stiffened plate composites

    SpecificationNumerical value
    Length/mm150
    Width/mm 50
    Thickness of base plate/mm 5
    Rib height/mm 5
    下载: 导出CSV

    表  3  正交各向异性复合材料力学性能参数

    Table  3.   Mechanical property parameters of orthotropic composites

    Elastic constantNumerical value
    Young's modulus, E1/MPa4644
    Young's modulus, E2/MPa5627
    Young's modulus, E3/MPa3705
    Shear modulus, G23/MPa1744
    Shear modulus, G13/MPa1633
    Shear modulus, G12/MPa1855
    Poisson’s ratio, ν230.32
    Poisson’s ratio, ν130.33
    Poisson’s ratio, ν120.19
    下载: 导出CSV

    表  4  机织T型加筋板 FEM与实验测试误差

    Table  4.   FEM and experimental test error of woven T-stiffened plate

    Energy/JLoad peak error/%Maximum absorption
    energy error/%
    202.42.0
    304.43.6
    507.2−2.4
    802.6−1.5
    下载: 导出CSV
  • [1] 肖遥, 李东升, 吉康, 等. 大型复合材料航空件固化成型模具技术研究与应用进展[J]. 复合材料学报, 2022, 39(3):907-925.

    XIAO Yao, LI Dongsheng, JI Kang, et al. Research and application progress of curing tooling technology for large composite aeronautical components[J]. Acta Materiae Compositae Sinica,2022,39(3):907-925(in Chinese).
    [2] 马全胜, 李学臻, 王玉琳, 等. 三维立体织物复合材料研究与进展[J]. 化工新型材料, 2021, 49(S1):279-282.

    MA Quansheng, LI Xuezhen, WANG Yulin, et al. Rescarch and progress of 3D stereo fabric composite[J]. New Chemical Materials,2021,49(S1):279-282(in Chinese).
    [3] WANG C Z, SU D D, XIE Z F, et al. Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres[J]. Polymer Testing,2021,101:107314. doi: 10.1016/j.polymertesting.2021.107314
    [4] 蔚凤生. 浅谈复合材料在飞机上的设计及应用[J]. 军民两用技术与产品, 2015(8):116. doi: 10.3969/j.issn.1009-8119.2015.08.107

    WEI Fengsheng. Design and application of composite materials in aircraft[J]. Dual Use Technologies & Products,2015(8):116(in Chinese). doi: 10.3969/j.issn.1009-8119.2015.08.107
    [5] 吴承思, 李庆飞. 复合材料机身加筋壁板选型研究[J]. 纤维复合材料, 2016, 33(2):3-5. doi: 10.3969/j.issn.1003-6423.2016.02.001

    WU Chengsi, LI Qingfei. Study about choice of stiffened structure configuration of laminated composite fuselage[J]. Fiber composites,2016,33(2):3-5(in Chinese). doi: 10.3969/j.issn.1003-6423.2016.02.001
    [6] CHEN X, TAYLOR L W, TSAI L J. Three-dimensional fabric structures. Part 1—An overview on fabrication of three-dimensional woven textile preforms for composites[M]. Duxford: Woodhead Publishing Series in Textiles, 2016: 285-304.
    [7] CHOU S, CHEN H E. The weaving methods of three-dimensional fabrics of advanced composite materials[J]. Composite Structures,1995,33(3):159-172. doi: 10.1016/0263-8223(95)00120-4
    [8] 欧阳天, 关志东, 谭日明, 等. 复合材料T型加筋板筋条冲击损伤及冲击后压缩行为试验 [J]. 复合材料学报. 2018. 35(10): 2689-2697.

    OUYANG Tian, GUAN Zhidong, TAN Riming, et al. Experimental study on stiffener impact damage and compression after impact behavior of T-stiffened composite panels[J]. Acta Materiae Compositae Sincia, 2018, 35(10): 2689-2697(in Chinese).
    [9] 崔勇江, 王斌团, 赵占文. 复合材料T型加筋壁板后屈曲承载能力研究[J]. 复合材料科学与工程, 2021(7):22-27.

    CUI Yongjiang, WANG Bintuan, ZHAO Zhanwen. Research on the post-buckling bearing capacity of T-type composite stiffened panel[J]. Composites Science and Engineering,2021(7):22-27(in Chinese).
    [10] 贾佳乐. 碳纤维复合材料加筋板低速冲击及其剩余压缩性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.

    JIA Jiale. Investigation on low velocity impact and residual compressive properties of reinforced composite skin[D]. Harbin: Harbin University of Science and Technology, 2021(in Chinese).
    [11] 唐振南, 戴瑛, 聂坤, 等. CFRP加筋板剪切稳定性试验和数值分析模型研究[J]. 力学季刊, 2015, 36(3):408-415.

    TANG Zhennan, DAI Ying, NIE Kun, et al. Shear stability test and numerical model study for carbon fiber reinforced composite stiffened plates[J]. Chinese Quarterly of Mechanics,2015,36(3):408-415(in Chinese).
    [12] 刘峰, 张成雷, 马佳, 等. 复合材料工字梁铺层结构设计及强度研究[J]. 机械科学与技术, 2016, 35(4):641-645. doi: 10.13433/j.cnki.1003-8728.2016.0426

    LIU Feng, ZHANG Chenglei, MA Jia, et al. Laminate structure design and strength analysis of I-beam composite[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(4):641-645(in Chinese). doi: 10.13433/j.cnki.1003-8728.2016.0426
    [13] HAO A, SUN B, QIU Y, et al. Dynamic properties of 3-D orthogonal woven composite T-beam under transverse impact[J]. Composites Part A: Applied Science & Manufacturing,2008,39(7):1073-1082.
    [14] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10):67-73.

    FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4- and 5-directional 3D braided composites[J]. Journal of Textile Research,2020,41(10):67-73(in Chinese).
    [15] 胡美琪. 三维编织复合材料梁多次横向冲击损伤分布的结构效应和温度效应[D]. 上海: 东华大学, 2020.

    HU Meiqi. Structural effect and temperature effect on multiple transverse impact damage distributions in 3-D braided composite beams[D]. Shanghai: Donghua University, 2020(in Chinese).
    [16] 刘军, 刘奎, 宁博, 等. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12):57-62.

    LIU Jun, LIU Kui, NING Bo, et al. Bending properties of three-dimensional braided composite T-beam at low temperature[J]. Journal of Textile Research,2019,40(12):57-62(in Chinese).
    [17] 魏小玲, 李瑞雪, 秦卓, 等. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11):51-55.

    WEI Xiaoling, LI Ruixue, QIN Zhuo, et al. Key technologies for formation of warp T-shape preforms[J]. Journal of Textile Research,2021,42(11):51-55(in Chinese).
    [18] 邓奇林, 杨敏, 姚彧敏, 等. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5):139-146.

    DENG Qilin, YANG Min, YAO Yumin, et al. Effect of three-directional orthogonal preform weaving parametes on properties of C/C composites[J]. Journal of Materials Engineering,2022,50(5):139-146(in Chinese).
    [19] 全国塑料制品标准化技术委员会. 硬质塑料板耐冲性能试验方法(落锤法): GB 11548—89[S]. 北京: 中国质检出版社. 1989.

    National Technical Committee for Standardization of Plastic Products. Standard text method for impact resistance of rigid plastic sheeting by means of a tup(falling weight): GB 11548—89[S]. Beijing: Chian Quality Inspection Press, 1989(in Chinese).
    [20] CHAMIS C C. Mechanics of composite materials: Past, present, and future[J]. Journal of Composites Technology & Research,1989,11(1):3-14.
    [21] SUN B Z, LIU Y K, GU B H. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite[J]. Composites Part B: Engineering,2009,40(6):552-560. doi: 10.1016/j.compositesb.2009.01.012
    [22] HU M Q, SUN B Z, GU B H. Microstructure modeling multiple transverse impact damages of 3-D braided composite based on thermo-mechanical coupling approach[J]. Composites Part B: Engineering,2021,214:108741. doi: 10.1016/j.compositesb.2021.108741
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  314
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-08-16
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-09-07
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回