留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态共价交联网络自修复涂层的研究进展

周威明 丁春香 潘明珠

周威明, 丁春香, 潘明珠. 基于动态共价交联网络自修复涂层的研究进展[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 周威明, 丁春香, 潘明珠. 基于动态共价交联网络自修复涂层的研究进展[J]. 复合材料学报, 2022, 40(0): 1-14
Weiming ZHOU, Cunxiang DING, Mingzhu PAN. Research Progress of Self-Healing Coatings Based on Dynamic Covalent Crosslinking[J]. Acta Materiae Compositae Sinica.
Citation: Weiming ZHOU, Cunxiang DING, Mingzhu PAN. Research Progress of Self-Healing Coatings Based on Dynamic Covalent Crosslinking[J]. Acta Materiae Compositae Sinica.

基于动态共价交联网络自修复涂层的研究进展

基金项目: 国家自然科学基金(32171704)
详细信息
    通讯作者:

    潘明珠,博士,教授,硕士生/博士生导师,研究方向为生物质复合材料 E-mail: mzpan@njfu.edu.cn

  • 中图分类号: TB332;TB34

Research Progress of Self-Healing Coatings Based on Dynamic Covalent Crosslinking

  • 摘要: 涂层是材料抵御外界应力损伤的重要屏障,且随着科技的发展,智能涂层可在原先的基础上赋予涂层荧光、抗菌、检测、传感等先进功能。然而,此类涂层在使用过程中不可避免会受到机械破坏(如擦痕、刮伤等),以及与内部各组分应力不匹配引发的宏观或者微观损伤,导致裂纹甚至开裂,结构损伤会引起功能的减弱甚至消失。因此,对涂层结构稳定性和功能持续性提出了更高要求。基于动态共价交联网络的自修复涂层是以动态共价键可逆反应为基础,在一定的外界刺激下建立原料分子与产物分子之间的热力学平衡,通过动态网络“重组”实现对涂层自修复。动态网络活化能的大小不仅能直接反映修复难易程度(反应速率),也能间接反映材料的力学表现。因此,本文将从化学热/动力学角度出发,分析自修复网络构筑与反应活化能之间的关系,并进一步概述基于动态共价交联网络的自修复涂层在传统涂料(层)、智能传感、光学变色、生物医药领域的应用。最后对动态共价自修复涂层目前存在的局限和未来的发展进行展望。

     

  • 图  1  动态共价键的修复机制及分子模型:(a) 修复机制;(b) 分子模型

    Figure  1.  Self-healing mechanism and molecular model of dynamic covalent bond: (a) mechanism; (b) molecular model.

    图  2  解离型自修复的修复机制及分子交联网络:(a) β-羟基酯键修复机制[33];(b) β-羟基酯键交联网络[32];(c) 硼酸酯键交联网络[34]

    Figure  2.  Dissociative self-healing mechanism and molecular crosslinking networks: (a) dynamic ester bond self-healing mechanism[33]; (b) β-hydroxyl esters bond crosslinking networks[32]; (c) boric acid ester bond crosslinking networks[34].

    图  3  解离型自修复机制及分子交联网络:(a) 碳碳双键修复机制[35];(b) 碳碳双键交联网络[36];(c) 硫硒键体修复机制[26]

    Figure  3.  Dissociative self-healing mechanism and molecular crosslinking networks: (a) C=C bond self-healing mechanism[35]; (b) C=C bond crosslinking networks[36]; (c) sulfur-selenium self-healing mechanism[26].

    图  4  结合型和联合使用型自修复的分子交联网络:(a) 亚胺键[44];(b) 酰腙转亚胺的-C-N-过渡单键[48];(c) 酰腙键[49];(d) 亚胺键和二硫键的联合使用[30]

    Figure  4.  Self-healing molecular crosslinking networks for associative and combined application: (a) imine[44]; (b) C-N- transition single bond of acylhydrazone to imine[48]; (c) acylhydrazone[49]; (d) combined application of imine and disulfide bonds[30].

    图  5  传统涂层应用:(a) 光子晶体自修复涂层[52];(b) 紫外光固化生物基涂层[54];(c) BLDS自修复[56]

    Figure  5.  Traditional coating applications: (a) photonic crystal self-healing coating[52]; (b) uv-curable bio-based coatings[54]; (c) BLDS self-healing[56]

    图  6  功能涂层应用:(a) 在PET上构建的智能传感涂层[57];(b) Odex-TEP光学变色涂层[64];(c) A-HA-ADH-SS生物医药涂层[66]

    Figure  6.  Functional coating application: (a) intelligent sensing coating constructed on PET[57]; (b) Odex-TEP photochromic coating[64]; (c) A-HA-ADH-SS biomedical coating[66].

    表  1  动态共价反应及其交联网络对应的活化能Ea

    Table  1.   Dynamic covalent reactions, and its activation energy Ea for crosslinking networks

    Reaction typeChemical reactionsEa/kJ/molRef
    酯交换反应
    Transesterification
    reaction
    120[21]
    135.4[22]
    98.74/
    112.97
    [23-24]
    DA加成反应
    Diels-Alder reaction
    146.44[25]
    对称式交换反应
    Symmetric exchange
    reaction
    240[26]
    172[26]
    203[27]
    席夫碱反应
    Schiff reaction
    24.9[28]
    41.84[29]
    77[30]
    酰肼(醛)反应
    Hydrazide (aldehyde)
    reaction
    115.9[31]
    注:对称式交换反应中Ea表示键能,其他Ea表示活化能。
    下载: 导出CSV
  • [1] YE J, LIU H M, XIONG J. Preparation and properties of fluorescent cellulosic paper via surface coating of anionic cellulose ethers/rare earth metal ions composites[J]. Industrial & Engineering Chemistry Research,2019,58(6):2370-2378.
    [2] SONG L, XIAO Y F, GAN L, et al. The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings[J]. Surface & Coatings Technology,2012,206(11-12):2986-2990.
    [3] LEE H J, KIM B C, OH M K, et al. A sensitive and reliable detection of thrombin via enzyme-precipitate-coating-linked aptamer assay[J]. Chemical Communications,2012,48(48):5971-5973. doi: 10.1039/c2cc30710c
    [4] BU Y B, SHEN T Y, YANG W K, et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin[J]. Science Bulletin,2021,66(18):1849-1857. doi: 10.1016/j.scib.2021.04.041
    [5] 李健, 王颖, 高新蕾. 智能涂层−类生物表面活性智能涂层[J]. 材料保护, 2006, 1:36-39. doi: 10.3969/j.issn.1001-1560.2006.01.011

    LI Jian, WANG Ying, GAO Xinlei. Intelligent coating—intelligent coating of biological surface activity[J]. Materials Protection,2006,1:36-39(in Chinese). doi: 10.3969/j.issn.1001-1560.2006.01.011
    [6] 王林, 丁坤英, 林小娉, 等. 8 YSZ双层热障涂层缺陷演变与微裂纹水浸超声宏观检测[J]. 无机材料学报, 2019, 34(12):1265-1271. doi: 10.15541/jim20190135

    WANG Ling, DING Kunying, LING Xiaoping, et al. Defect evolution and microcracks of 8 ysz double-layer thermal barrier coatings by water immersion ultrasound macroscopic detection[J]. Journal of Inorganic Materials,2019,34(12):1265-1271(in Chinese). doi: 10.15541/jim20190135
    [7] 崔静, 郭玉珠, 庞铭, 等. 超音速等离子喷涂ZrO2涂层的缺陷分析与力学性能[J]. 金属热处理, 2019, 45(8):216-221.

    CUI Jing, GUO Yuzhu, PANG Ming, et al. Defect analysis and mechanical properties of supersonic plasma sprayed ZrO2 coating[J]. Heat Treatment of Metals,2019,45(8):216-221(in Chinese).
    [8] 郭金利, 张雁恒, 卢宁, 等. 面向热障涂层内部界面缺陷的快速检测装置[J]. 实验力学, 2021, 36(4):471-479. doi: 10.7520/1001-4888-21-013

    GUO Jinli, ZHANG Yanheng, LU Ning, et al. Rapid detection instrument for interface defects of thermal barrier coating[J]. Journal of Experimental Mechanics,2021,36(4):471-479(in Chinese). doi: 10.7520/1001-4888-21-013
    [9] CRALL M D, KELLER M W. Targeted self-healing by magnetically guiding microcapsules[J]. ACS Applied Materials & Interfaces,2017,9(7):6504-6511.
    [10] ROWAN S J, CANTRILL S J, COUSINS G R L, et al. Dynamic covalent chemistry[J]. Angewandte Chemie-International Edition,2002,41(6):898-952. doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
    [11] BOUTELLE R C, NORTHROP B H. Substituent effects on the reversibility of furan-maleimide cycloadditions[J]. Journal of Organic Chemistry,2011,76(19):7994-8002. doi: 10.1021/jo201606z
    [12] PODGÓRSKI M, SPURGIN N, MAVILA S, et al. Mixed mechanisms of bond exchange in covalent adaptable networks: monitoring the contribution of reversible exchange and reversible addition in thiol-succinic anhydride dynamic networks[J]. Polymer Chemistry,2020,11(33):5365-5376. doi: 10.1039/D0PY00091D
    [13] NICOLAY R, KAMADA J, VAN WASSEN A. Responsive gels based on dynamic covalent trithiocarbonate cross-linker[J]. Macromolecules,2010,43(9):4355-4361. doi: 10.1021/ma100378r
    [14] ZHANG Z P, RONG M Z, ZHANG M Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science,2018,80:39-93. doi: 10.1016/j.progpolymsci.2018.03.002
    [15] 黄华奇, 黄荣彬. 认识化学反应平衡[J]. 大学化学, 2016, 31(9):68-76. doi: 10.3866/pku.DXHX201512016

    HUANG Huaqi, HUANG Ronbin. On the chemical equilibrium[J]. University Chemical,2016,31(9):68-76(in Chinese). doi: 10.3866/pku.DXHX201512016
    [16] MAES F, MONTARNAL D, CANTOURNET S, et al. Activation and deactivation of self-healing in supramolecular rubbers[J]. Soft Matter,2012,8(5):1681-1687. doi: 10.1039/C2SM06715C
    [17] ZHANG Z P, RONG M Z, ZHANG M Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science,2018,80:39-93. doi: 10.1016/j.progpolymsci.2018.03.002
    [18] ZHANG L H, ROWAN S J. Effect of sterics and degree of cross-linking on the mechanical properties of dynamic poly(alkylurea-urethane) networks[J]. Macromolecules,2017,50(13):5051-5060. doi: 10.1021/acs.macromol.7b01016
    [19] SHI J X, ZHENG T Z, ZHANG Y, et al. Cross-linked polyurethane with dynamic phenol-carbamate bonds: properties affected by the chemical structure of isocyanate[J]. Polymer Chemistry,2021,12(16):2421-2432. doi: 10.1039/D1PY00157D
    [20] LIU J, LIU Y Y, WANG Y, et al. Disulfide bonds and metal-ligand co-crosslinked network with improved mechanical and self-healing properties[J]. Materials Today Communications,2017,13:282-289. doi: 10.1016/j.mtcomm.2017.10.013
    [21] DELAHAYE M, WINNE J M, DU PREZ F E. Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry[J]. Journal of the American Chemical Society,2019,141(38):15277-15287. doi: 10.1021/jacs.9b07269
    [22] FU F Y, HUANG M Q, ZHANG W L, et al. Thermally assisted self-healing behavior of anhydride modified polybenzoxazines based on transesterification[J]. Scientific Reports,2018,8:10325. doi: 10.1038/s41598-018-27942-9
    [23] YANG Y, DU F S; LI Z C. Thermally healable and reprocessable polymethacrylate networks based on diol-mediated metathesis of 6-membered boronic esters[J]. Polymer Chemistry,2020,11(11):1860-1870. doi: 10.1039/C9PY01546A
    [24] SMITH B J, DICHTEL W R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions[J]. Journal of the American Chemical Society,2014,136(24):8783-8789. doi: 10.1021/ja5037868
    [25] JORDI R-A, MOTOYUKI S, DOMINIK M. Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes[J]. Chemistry-A European Journal,2009,15(48):13331-13335. doi: 10.1002/chem.200902573
    [26] 夏嘉豪, 李宏斌, 许华平. 含硫/硒动态共价键强弱的测定[J]. 高分子学报, 2020, 51(2):205-213. doi: 10.11777/j.issn1000-3304.2019.19166

    XIA JiaHao, LI Honbin, XU Huaping. Measuring the strength of S/Se based dynamic covalent bonds[J]. Acta Polymerica Sinica,2020,51(2):205-213(in Chinese). doi: 10.11777/j.issn1000-3304.2019.19166
    [27] JI S B, XIA J H, XU H P. Dynamic chemistry of selenium: Se-N and Se-Se dynamic covalent bonds in polymeric systems[J]. ACS Macro Letters,2016,5:78-82. doi: 10.1021/acsmacrolett.5b00849
    [28] GOH M J, SHIN H, KIM C B. Manipulating bond exchange rates invitrimer-hexagonal boron nitride nanohybrids via heat capacity enhancement[J]. Journal of Applied Polymer Science,2021,12(138):50079.
    [29] CHANG H S, GAO J S, DANIEL A T, et al. Mechanisms and energetics of free radical initiated disulfide bond cleavage in model peptides and insulin by mass spectrometry[J]. Chemical Science,2015,6(8):4550-4560. doi: 10.1039/C5SC01305D
    [30] LEE S-H, SHIN S-R, LEE D-S. Self-healing of cross-linked pu via dual-dynamic covalent bonds of a schiff base from cystine and vanillin[J]. Materials and Design,2019,172:107774. doi: 10.1016/j.matdes.2019.107774
    [31] ZHAO S S, LI L L, LIU X R, et al. Crystal structure, thermal decomposition and interaction withct-dna of three 2-hydroxy-1-naphthaldehyde acyl hydrazones[J]. Acta Physico-Chimica Sinica,2017,33(2):356-363. doi: 10.3866/PKU.WHXB201610191
    [32] MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science,2011,334(6058):965-968. doi: 10.1126/science.1212648
    [33] ZHANG J S, HUANG J, ZHU G Q. Self-healing, recyclable, and shape memory UV-curable coatings derived from tung oil and malic acid[J]. Green Chemistry,2021,23(16):5875-5886. doi: 10.1039/D1GC01726H
    [34] CROMWELL O R, CHUNG J Y, GUAN Z B. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds[J]. Journal of the American Chemical Society,2015,137(20):6492-6495. doi: 10.1021/jacs.5b03551
    [35] 王怡, 冯展彬 左洪礼, 等. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019, 50(5):485-495. doi: 10.11777/j.issn1000-3304.2019.18280

    WANG Yi, FENG Zhanbin, ZUO Honli, et al. Preparation of thermally reversible silicone rubber/carbon nanotubes composite with high electrical conductivity based on diels-alder reaction[J]. Acta Polymerica Sinica,2019,50(5):485-495(in Chinese). doi: 10.11777/j.issn1000-3304.2019.18280
    [36] ZHAO J, XU R, LUO G X, et al. A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer[J]. Journal of Materials Chemistry B,2016,4(5):982-989. doi: 10.1039/C5TB02036K
    [37] BAI J, SHI Z X. Dynamically cross-linked elastomer hybrids with light-induced rapid and efficient self-healing ability and reprogrammable shape memory behavior[J]. ACS Applied Materials & Interfaces,2017,9:27213-27222.
    [38] LI X Y, LIN B N, LI H B, et al. Carbon doped hexagonal BN as a highly efficient metal-free base catalyst for Knoevenagel condensation reaction[J]. Applied Catalysis B-Environmental,2018,239:254-259. doi: 10.1016/j.apcatb.2018.08.021
    [39] DING X Y, LI G, ZHANG P, et al. Constructing thermally reversible dynamic hydrogels via catalysis-free knoevenagel condensation[J]. ACS Macro Letters,2020,9(6):830-835. doi: 10.1021/acsmacrolett.0c00330
    [40] WU H, TIAN M, ZHANG L, et al. New understanding of morphology evolution of thermoplastic vulcanizate (TPV) during dynamic vulcanization[J]. ACS Sustainable Chemistry & Engineering,2015,3(1):26-32.
    [41] JI S B, CAO W, YU Y, et al. Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis[J]. Angewandte Chemie-International Edition,2014,53(26):6781-6785. doi: 10.1002/anie.201403442
    [42] JI S B, EL-MARD H, SMET M, et al. Selenium containing macrocycles: transformation between Se—N/Se—S/Se—Se bonds[J]. Science China-Chemistry,2017,60(9):1191-1196. doi: 10.1007/s11426-017-9059-4
    [43] FAN F Q, JI S B, SUN C Z, et al. Wavelength-controlled dynamic metathesis: a light-driven exchange reaction between disulfide and diselenide bonds[J]. Angewandte Chemie International Edition,2018,57(50):16426-16430. doi: 10.1002/anie.201810297
    [44] DU Y Z, YU G X, DAI X Y, et al. Highly stretchable, self-Healable, ultrasensitive strain and proximity sensors based on skin-inspired conductive film for human motion monitoring[J]. ACS Applied Materials & Interfaces,2020,12(46):51987-51998.
    [45] LI S Z, PEI M J, WAN T T, et al. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials[J]. Carbohydrate Polymers,2020,250:116922. doi: 10.1016/j.carbpol.2020.116922
    [46] MEMON H, WEI Y, ZHANG L Y, et al. An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites[J]. Composites Science and Technology,2020,199:108314. doi: 10.1016/j.compscitech.2020.108314
    [47] LEHN J M. Dynamers: dynamic molecular and supramolecular polymers [C]. Progress in Polymer Science. Paris, Pergamon-Elsevier Science Ltd: 2005, 30 (8-9): 814-831.
    [48] NGUYEN R, HUC I. Optimizing the reversibility of hydrazone formation for dynamic combinatorial chemistry[J]. Chemical Communications,2003,8:942-943.
    [49] SHEN J F, WANG X M, AN H, et al. Cross-linking Induced thermoresponsive hydrogel with light emitting and self-healing property[J]. Journal of Polymer Science Part A-Polymer Chemistry,2019,57(8):869-877. doi: 10.1002/pola.29337
    [50] HE L, JIANG Y, TU C, et al. Self-assembled encapsulation systems with pH tunable release property based on reversible covalent bond[J]. Chemical Communications,2010,46(40):7569-7571. doi: 10.1039/c0cc02654a
    [51] DAI X Y, DU Y Z, WANG Y S, et al. Stretchable self-healing polymeric networks with recyclability and dual responsiveness[J]. ACS Applied Materials & Interfaces,2020,2:1065-1072.
    [52] 李苗苗 吕全乾 朱锦涛, 等. 基于聚硼硅氧烷的自愈合光子晶体弹性体[J]. 高分子学报, 2019, 50(3):271-280. doi: 10.11777/j.issn1000-3304.2019.18213

    LI Miaomiao, LYU Quanqian, ZHU Jintao, et al. Polyborosiloxane-based photonic elastomers with self-healing capability[J]. Acta Polymerica Sinica,2019,50(3):271-280(in Chinese). doi: 10.11777/j.issn1000-3304.2019.18213
    [53] WANG X F, ZHAO K F, HUANG X W, et al. Preparation and properties of self-healing polyether amines based on Diels–Alder reversible covalent bonds[J]. High Performance Polymers,2019,31(1):51-62. doi: 10.1177/0954008317750727
    [54] LIU R T, LI S H, YAO N, et al. Castor oil-based polyurethane networks containing diselenide bonds: self-healing, shape memory, and high flexibility[J]. Progress in Organic Coatings,2022,163:106615. doi: 10.1016/j.porgcoat.2021.106615
    [55] HUANG J, ZHANG J S, ZHU G Q, et al. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid[J]. Progress In Organic Coatings,2021,159:106391. doi: 10.1016/j.porgcoat.2021.106391
    [56] KHAN A, RABNAWAZ M. Base-Layer-Driven Self-Healing Materials[J]. Acs Applied Polymer Materials,2021,3(8):3922-3928. doi: 10.1021/acsapm.1c00476
    [57] LIANG Z, ZHANG J Y, WU C. et al. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring[J]. Biosensors and Bioelectronics,2020,155:112105. doi: 10.1016/j.bios.2020.112105
    [58] DING J, QIAO Z, ZHANG Y S, et al. NIR-responsive multi-healing HMPAM/dextran/ AgNWs hydrogel sensor with recoverable mechanics and conductivity for human-machine interaction[J]. Carbohydrate Polymers,2020,247:116686. doi: 10.1016/j.carbpol.2020.116686
    [59] HUANG Q Y, TANG Z H, WANG D, et al. Engineering segregated structures in a cross-linked elastomeric network enabled by dynamic cross-link reshuffling[J]. ACS Macro Letters,2021,10:231-236. doi: 10.1021/acsmacrolett.0c00852
    [60] WANG P G, PEI D F, WANG Z B. et al. Biocompatible and self-healing ionic gel skin as shape-adaptable and skin adhering sensor of human motions[J]. Chemical Engineering Journal,2020,398:12550.
    [61] JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie-International Edition,2015,54(18):5360-5363. doi: 10.1002/anie.201501193
    [62] VIJAYAKUMAR C, PRAVEEN V K, AJAYAGHOSH A. RGB Emission through controlled donor self-assembly and modulation of excitation energy transfer: a novel strategy to white-light-emitting organogels[J]. Advanced Materials,2009,21(20):2059-2063. doi: 10.1002/adma.200802932
    [63] ZHAO Y J, ZHAO X W, TANG B C, et al. Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free dna detection[J]. Advanced Functional Materials,2010,20(6):976-982. doi: 10.1002/adfm.200901812
    [64] ZHANG Y D, DING Z Y, LIU Y, ed al. White-light-emitting hydrogels with self-healing properties and adjustable emission colors[J]. Journal of Colloid and Interface Science,2021,582:825-833. doi: 10.1016/j.jcis.2020.08.080
    [65] NIU W B, CAO X F, WANG Y P, et al. Photonic vitrimer elastomer with self-healing, high toughness, mechanochromism, and excellent durability based on dynamic covalent bond [J]. Advanced Functional Materials, 31 (13): 2009017.
    [66] GUAN S C, LI Y, CHENG C, et al. Manufacture of pH- and HAase-responsive hydrogels with on-demand and continuous antibacterial activity for full-thickness wound healing[J]. International Journal of Biological Macromolecules,2020,164:2418-2431. doi: 10.1016/j.ijbiomac.2020.08.108
    [67] ZHANG J W, ZHANG X Z, HONG Y, et al. Tissue-adhesive paint of silk microparticles for articular surface cartilage regeneration[J]. Acs Applied Materials & Interfaces,2020,12(20):22467-22478.
    [68] SHAO C Y, MENG L, WANG M, et al. Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels[J]. Acs Applied Materials & Interfaces,2019,11(6):5885-5895.
  • 加载中
计量
  • 文章访问数:  92
  • HTML全文浏览量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 录用日期:  2022-04-16
  • 修回日期:  2022-04-11
  • 网络出版日期:  2022-04-29

目录

    /

    返回文章
    返回