Preparation and EMI Shielding Properties of Lightweight and Mechanically Strong MXene/Bacterial Cellulose Composite Aerogels
-
摘要:
近年来,电磁屏蔽材料逐渐朝着轻质、高性能和环境友好等方向发展。高分子基导电复合材料(CPCs)具有易成型加工和电磁屏蔽性能稳定等优点,但存在导电填料用量高和电磁屏蔽效能(EMI SE)低等缺点。将多孔结构引入CPCs中制备气凝胶不仅能够大幅降低材料密度,而且可以引入更多导电界面,从而增强电磁波吸收并提升电磁屏蔽效能,同时实现轻量化和高电磁屏蔽性能。然而,以合成高分子为基体的聚合物基电磁屏蔽材料生物相容性较差且难以降解,易造成资源浪费且不符合绿色可持续发展的理念。细菌纤维素(BC)是一种由微生物发酵生成的一维纤维素生物质材料,具有高比表面积、优异的力学性能、良好的生物相容性和可降解等优点,已成为目前的研究热点。本文以生物质细菌纤维素(BC)为基体,导电Ti3C2Tx MXene为功能填料,通过液氮定向冷冻-冷冻干法制备轻质高强定向多孔结构MXene/BC复合气凝胶。深入研究了Ti3C2Tx MXene质量分数对复合气凝胶微观结构、导电性能、力学性能和电磁屏蔽性能的影响规律。结果表明,当Ti3C2Tx MXene质量分数为40wt%时,复合气凝胶的密度仅为18.3 mg/cm3,电导率和X波段EMI SE均达到最大,分别为459.3 S/cm和72 dB(厚度为4 mm)。由于BC和Ti3C2Tx MXene之间存在丰富的氢键相互作用,复合气凝胶在30%应变下压缩强度达到38.3 kPa,较纯BC气凝胶提升了116.1%。 轻质高强且高电磁屏蔽效能MXene/BC复合气凝胶 -
关键词:
- 电磁屏蔽 /
- 复合气凝胶 /
- 定向多孔结构 /
- 细菌纤维素 /
- Ti3C2Tx MXene
Abstract: With the rapid development of highly-integrated and highly-powered 5G communication and wearable electronic devices, the electromagnetic interference and electromagnetic pollution problems caused by electromagnetic waves are becoming increasingly serious. It is urgent to develop lightweight, mechanically strong and environmentally friendly electromagnetic shielding composites. Herein, the lightweight and mechanically strong MXene/bacterial cellulose (BC) composite aerogels with directional porous structures are prepared via the liquid nitrogen directional freezing followed by freeze drying method using biomass BC as matrix and conductive Ti3C2Tx MXene as functional fillers. The effects of Ti3C2Tx MXene mass fraction on the microstructures, conductive and mechanical properties, as well as EMI shielding properties of the composite aerogels are investigated in detail. The results show that the composite aerogels with a Ti3C2Tx MXene mass fraction of 40wt% exhibit a low mass density of 18.3 mg/cm3, as well as the highest electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) of 459.3 S/cm and 72 dB (at a thickness of 4 mm) in X band with an absorption dominated EMI shielding mechanism. Owing to the abundant hydrogen bonding interactions, the composite aerogels exhibit a high compression strength of 38.3 kPa, which is 116.1% higher than that of pure BC aerogels.-
Key words:
- EMI shielding /
- Composite aerogels /
- Directional porous structures /
- Bacterial cellulose /
- Ti3C2Tx MXene
-
图 9 不同Ti3C2Tx MXene质量分数MXene/BC复合气凝胶EMI SE(a)和SER、SEA、SET(b);(c)单位厚度比屏蔽效能(SSE/t);(d)电磁屏蔽效率;(e)试样厚度对30wt% Ti3C2Tx MXene复合气凝胶EMI SE的影响;(f)电磁屏蔽机制
Figure 9. EMI SE (a) and SER, SEA, SET (b) of MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions; (c) Specific EMI SE per unit thickness; (d) EMI shielding efficiency of the composite aerogels; (e) Effects of thickness on the EMI SE of composite aerogels with 30wt% Ti3C2Tx MXene; (f) EMI shielding mechanism of the composite aerogels
-
[1] YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. doi: 10.1002/adma.201906769 [2] ZHANG M, CAO M S, SHU J C, et al. Electro-magnetic absorber converting radiation for multifunction[J]. Materials Science and Engineering:R:Reports,2021,145:100627. doi: 10.1016/j.mser.2021.100627 [3] YI P, ZOU H H, YU Y, H et al. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles[J]. ACS Nano,2022,16(9):14490-14502. doi: 10.1021/acsnano.2c04863 [4] DAI Y, WU X Y, LI L L, et al. 3 D printing of resilient, lightweight and conductive MXene/ reduced graphene oxide architectures for broadband electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2022,10(21):11375-11385. doi: 10.1039/D2TA01388F [5] 李姝颖, 姜玉莹, 戴会娟, 等. 面向5 G毫米波的绿色多性能电磁屏蔽材料[J]. 复合材料学报, 2022, 40(0):1-11.LI S Y, JIANG Y Y, DAI H J, et al. Green multi-performances electromagnetic shielding material for 5 G mm-wave[J]. Acta Materiae Compositae Sinica,2022,40(0):1-11(in Chinese). [6] WANG T, YU W C, SUN W J, et al. Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding[J]. Composites Science and Technology,2020,200:108446. doi: 10.1016/j.compscitech.2020.108446 [7] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5):1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003ZHANG M H, MA Z L, MA J Z, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica,2021,38(5):1358-1370(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201208.003 [8] CHEN J L, SHEN B, JIA X C, et al. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions[J]. Materials Today Physics,2022,24:100695. doi: 10.1016/j.mtphys.2022.100695 [9] XU J, ZHANG X, ZHAO Z, et al. Lightweight, fire-retardant, and anti-compressed honey-combed-like carbon aerogels for thermal management and high-efficiency electro-magnetic absorbing properties[J]. Small,2021,17(33):2102032. doi: 10.1002/smll.202102032 [10] LIU J, ZHANG H B, SUN R H, et al. Hydro-phobic, flexible, and lightweight MXene foams for high-performance electromagnetic-inter-ference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367 [11] HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano,2019,14(1):688-697. [12] LIU J, ZHANG H B, XIE X, et al. Multi-functional, superelastic, and lightweight MXene/ polyimide aerogels[J]. Small,2018,14(45):1802479. doi: 10.1002/smll.201802479 [13] WANG L, SONG P, LIN C T, et al. 3 D shapeable, superior electrically conductive cellulose nano-fibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding[J]. Research,2020,2020:4093732. [14] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/ cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997 [15] LIANG C B, RUAN K P, ZHANG Y L, et al. Multifunctional flexible electromagnetic inter-ference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances[J]. ACS Applied Materials & Interfaces,2020,12(15):18023-18031. [16] MA Z L, XIANG X L, SHAO L, et al. Multi-functional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing[J]. Angewandte Chemie International Edition,2022,61(15):e202200705. [17] SONG J W, CHEN C J, YANG Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano,2018,12(1):140-147. doi: 10.1021/acsnano.7b04246 [18] ZENG Z H, WANG C X, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science,2020,7(15):2000979. doi: 10.1002/advs.202000979 [19] MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/ MXene film with Janus structure and excellent mechanical property for electromagnetic inter-ference shielding[J]. Chemical Engineering Journal,2021,403:126438. doi: 10.1016/j.cej.2020.126438 [20] WU Z Y, LI C, LIANG H W, et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie,2013,125(10):2997-3001. doi: 10.1002/ange.201209676 [21] CHEN X, YUAN F S, ZHANG H, et al. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials[J]. Journal of Materials Science,2016,51(12):5573-5588. doi: 10.1007/s10853-016-9899-2 [22] 李桢, 马忠雷, 康松磊, 等. 细菌纤维素@Fe3O4/AgNWs复合薄膜的制备与电磁屏蔽性能[J]. 精细化工, 2022, 39(6):1162-1211.LI Z, MA Z L, KANG S L, et al. Preparation and electromagnetic shielding properties of bacterial cellulose@Fe3O4/AgNWs composite films[J]. Fine Chemicals,2022,39(6):1162-1211(in Chinese). [23] MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx mxene/silver nanowire nano-composite papers for high-performance electro-magnetic interference shielding[J]. ACS Nano,2020,14(7):8368-8382. doi: 10.1021/acsnano.0c02401 [24] ZHAO B, MA Z L, SUN Y Y, et al. Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances[J]. Small Structures,2022,3(10):2200162. doi: 10.1002/sstr.202200162 [25] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high-performance electro-magnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653. doi: 10.1021/acsnano.0c01635 [26] 李素琴, 李喜民, 刘 刚. 飞机用电磁屏蔽橡胶材料[J]. 化工新型材料, 2014, 42(1):177-178.LI S Q, LI X M, LIU G, et al. Study on electromanetic shielding rubble materials used in aerospace[J]. New Chemical Materials,2014,42(1):177-178(in Chinese). -

计量
- 文章访问数: 140
- HTML全文浏览量: 172
- 被引次数: 0