留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能

张艳 马忠雷 李桢 景佳瑶 邵亮

张艳, 马忠雷, 李桢, 等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 张艳, 马忠雷, 李桢, 等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 41(0): 1-9
Yan ZHANG, Zhonglei MA, Zhen LI, Jiayao JING, Liang SHAO. Preparation and EMI Shielding Properties of Lightweight and Mechanically Strong MXene/Bacterial Cellulose Composite Aerogels[J]. Acta Materiae Compositae Sinica.
Citation: Yan ZHANG, Zhonglei MA, Zhen LI, Jiayao JING, Liang SHAO. Preparation and EMI Shielding Properties of Lightweight and Mechanically Strong MXene/Bacterial Cellulose Composite Aerogels[J]. Acta Materiae Compositae Sinica.

轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能

基金项目: 国家自然科学基金(52273083; 51903145); 陕西省重点研发计划项目(2023-YBGY-476);中央高校基本科研业务费专项资金资助(D5000210627)
详细信息
    通讯作者:

    马忠雷,博士,副教授,硕士生导师,研究方向为功能高分子复合材料 E-mail: mazl@nwpu.edu.cn

    邵亮,博士,教授,博士生导师,研究方向为功能高分子复合材料 E-mail: shaoliang@sust.edu.cn

  • 中图分类号: TB332

Preparation and EMI Shielding Properties of Lightweight and Mechanically Strong MXene/Bacterial Cellulose Composite Aerogels

Funds: National Natural Science Foundation of China (52273083; 51903145); Key Research and Development Project of Shaanxi Province (2023-YBGY-476); Fundamental Research Funds for the Central Universities (D5000210627)
  • 摘要: 近年来,电磁屏蔽材料逐渐朝着轻质、高性能和环境友好等方向发展。高分子基导电复合材料(CPCs)具有易成型加工和电磁屏蔽性能稳定等优点,但存在导电填料用量高和电磁屏蔽效能(EMI SE)低等缺点。将多孔结构引入CPCs中制备气凝胶不仅能够大幅降低材料密度,而且可以引入更多导电界面,从而增强电磁波吸收并提升电磁屏蔽效能,同时实现轻量化和高电磁屏蔽性能。然而,以合成高分子为基体的聚合物基电磁屏蔽材料生物相容性较差且难以降解,易造成资源浪费且不符合绿色可持续发展的理念。细菌纤维素(BC)是一种由微生物发酵生成的一维纤维素生物质材料,具有高比表面积、优异的力学性能、良好的生物相容性和可降解等优点,已成为目前的研究热点。本文以生物质细菌纤维素(BC)为基体,导电Ti3C2Tx MXene为功能填料,通过液氮定向冷冻-冷冻干法制备轻质高强定向多孔结构MXene/BC复合气凝胶。深入研究了Ti3C2Tx MXene质量分数对复合气凝胶微观结构、导电性能、力学性能和电磁屏蔽性能的影响规律。结果表明,当Ti3C2Tx MXene质量分数为40wt%时,复合气凝胶的密度仅为18.3 mg/cm3,电导率和X波段EMI SE均达到最大,分别为459.3 S/cm和72 dB(厚度为4 mm)。由于BC和Ti3C2Tx MXene之间存在丰富的氢键相互作用,复合气凝胶在30%应变下压缩强度达到38.3 kPa,较纯BC气凝胶提升了116.1%。轻质高强且高电磁屏蔽效能MXene/BC复合气凝胶

     

  • 图  1  定向多孔结构MXene/生物质细菌纤维素(BC)复合气凝胶的制备示意图

    Figure  1.  Schematic diagram for preparation of MXene/ bacterial cellulose (BC) composite aerogels

    图  2  Ti3AlC2 (a)和Ti3C2Tx MXene(b)的SEM照片;(c)Ti3C2Tx MXene的TEM照片;(d)Ti3C2Tx MXene的XRD谱图

    Figure  2.  SEM images of Ti3AlC2 (a) and Ti3C2Tx MXene (b); TEM images (c) and XRD patterns of Ti3C2Tx MXene (d)

    图  3  定向多孔结构 MXene/BC 复合气凝胶的数码照片(a-e)和相应的 SEM 照片(a'-e':放大倍数 100 x,a''-e'':放大倍数 1000 x)

    Figure  3.  Digital photos (a-e) and corresponding SEM images (a'-e': magnification 100 x; a''-e'': magnification 1000 x) ofMXene/BC composite aerogels with directional porous structures

    图  4  Ti3C2Tx MXene质量分数为30wt% MXene/BC复合气凝胶的顶视(a)和侧视(b)SEM照片

    Figure  4.  Top view (a) and side view (b) SEM images of MXene/BC composite aerogels with the Ti3C2Tx MXene mass fraction of 30%

    图  5  BC、Ti3C2Tx MXene和MXene/BC复合气凝胶的XRD谱图(a)、XPS谱图(b)和FT-IR(c)谱图

    Figure  5.  FT-IR spectra (a), XPS spectra (b) and XRD spectra (c) of BC, Ti3C2Tx MXene and MXene/BC composite aerogels

    图  6  不同Ti3C2Tx MXene质量分数MXene/BC复合气凝胶的质量密度

    Figure  6.  Mass densities of the MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions

    图  7  (a)不同 Ti3C2Tx MXene 质量分数 MXene/BC 复合气凝胶的压缩应力-应变曲线;(b)承载 500 g 砝码的 MXene/BC 复合气凝胶数码照片

    Figure  7.  (a) Compression stress-strain curves of MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions; (b) Digital photo of MXene/BC composite aerogels loaded with 500 g weight

    图  8  (a)不同 Ti3C2Tx MXene 质量分数 MXene/BC 复合气凝胶的电导率;(b)MXene/BC 复合气凝胶集成电路点亮 LED 灯的数码照片

    Figure  8.  (a) Electrical conductivities of MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions; (b) Digital photo of integrated circuit MXene/BC composite aerogels loaded with 500 g weight

    图  9  不同Ti3C2Tx MXene质量分数MXene/BC复合气凝胶EMI SE(a)和SER、SEA、SET(b);(c)单位厚度比屏蔽效能(SSE/t);(d)电磁屏蔽效率;(e)试样厚度对30wt% Ti3C2Tx MXene复合气凝胶EMI SE的影响;(f)电磁屏蔽机制

    Figure  9.  EMI SE (a) and SER, SEA, SET (b) of MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions; (c) Specific EMI SE per unit thickness; (d) EMI shielding efficiency of the composite aerogels; (e) Effects of thickness on the EMI SE of composite aerogels with 30wt% Ti3C2Tx MXene; (f) EMI shielding mechanism of the composite aerogels

  • [1] YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. doi: 10.1002/adma.201906769
    [2] ZHANG M, CAO M S, SHU J C, et al. Electro-magnetic absorber converting radiation for multifunction[J]. Materials Science and Engineering:R:Reports,2021,145:100627. doi: 10.1016/j.mser.2021.100627
    [3] YI P, ZOU H H, YU Y, H et al. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles[J]. ACS Nano,2022,16(9):14490-14502. doi: 10.1021/acsnano.2c04863
    [4] DAI Y, WU X Y, LI L L, et al. 3 D printing of resilient, lightweight and conductive MXene/ reduced graphene oxide architectures for broad­band electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2022,10(21):11375-11385. doi: 10.1039/D2TA01388F
    [5] 李姝颖, 姜玉莹, 戴会娟, 等. 面向5 G毫米波的绿色多性能电磁屏蔽材料[J]. 复合材料学报, 2022, 40(0):1-11.

    LI S Y, JIANG Y Y, DAI H J, et al. Green multi-performances electromagnetic shielding material for 5 G mm-wave[J]. Acta Materiae Compositae Sinica,2022,40(0):1-11(in Chinese).
    [6] WANG T, YU W C, SUN W J, et al. Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding[J]. Composites Science and Technology,2020,200:108446. doi: 10.1016/j.compscitech.2020.108446
    [7] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5):1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003

    ZHANG M H, MA Z L, MA J Z, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica,2021,38(5):1358-1370(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201208.003
    [8] CHEN J L, SHEN B, JIA X C, et al. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions[J]. Materials Today Physics,2022,24:100695. doi: 10.1016/j.mtphys.2022.100695
    [9] XU J, ZHANG X, ZHAO Z, et al. Lightweight, fire-retardant, and anti-compressed honey-combed-like carbon aerogels for thermal management and high-efficiency electro-magnetic absorbing properties[J]. Small,2021,17(33):2102032. doi: 10.1002/smll.202102032
    [10] LIU J, ZHANG H B, SUN R H, et al. Hydro-phobic, flexible, and lightweight MXene foams for high-performance electromagnetic-inter-ference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [11] HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano,2019,14(1):688-697.
    [12] LIU J, ZHANG H B, XIE X, et al. Multi-functional, superelastic, and lightweight MXene/ polyimide aerogels[J]. Small,2018,14(45):1802479. doi: 10.1002/smll.201802479
    [13] WANG L, SONG P, LIN C T, et al. 3 D shapeable, superior electrically conductive cellulose nano-fibers/Ti3C2Tx MXene aerogels/epoxy nanocom­posites for promising EMI shielding[J]. Research,2020,2020:4093732.
    [14] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/ cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [15] LIANG C B, RUAN K P, ZHANG Y L, et al. Multifunctional flexible electromagnetic inter-ference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances[J]. ACS Applied Materials & Interfaces,2020,12(15):18023-18031.
    [16] MA Z L, XIANG X L, SHAO L, et al. Multi-functional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing[J]. Angewandte Chemie International Edition,2022,61(15):e202200705.
    [17] SONG J W, CHEN C J, YANG Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano,2018,12(1):140-147. doi: 10.1021/acsnano.7b04246
    [18] ZENG Z H, WANG C X, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science,2020,7(15):2000979. doi: 10.1002/advs.202000979
    [19] MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/ MXene film with Janus structure and excellent mechanical property for electromagnetic inter-ference shielding[J]. Chemical Engineering Journal,2021,403:126438. doi: 10.1016/j.cej.2020.126438
    [20] WU Z Y, LI C, LIANG H W, et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie,2013,125(10):2997-3001. doi: 10.1002/ange.201209676
    [21] CHEN X, YUAN F S, ZHANG H, et al. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials[J]. Journal of Materials Science,2016,51(12):5573-5588. doi: 10.1007/s10853-016-9899-2
    [22] 李桢, 马忠雷, 康松磊, 等. 细菌纤维素@Fe3O4/AgNWs复合薄膜的制备与电磁屏蔽性能[J]. 精细化工, 2022, 39(6):1162-1211.

    LI Z, MA Z L, KANG S L, et al. Preparation and electromagnetic shielding properties of bacterial cellulose@Fe3O4/AgNWs composite films[J]. Fine Chemicals,2022,39(6):1162-1211(in Chinese).
    [23] MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx mxene/silver nanowire nano-composite papers for high-performance electro-magnetic interference shielding[J]. ACS Nano,2020,14(7):8368-8382. doi: 10.1021/acsnano.0c02401
    [24] ZHAO B, MA Z L, SUN Y Y, et al. Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion perfor­mances[J]. Small Structures,2022,3(10):2200162. doi: 10.1002/sstr.202200162
    [25] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high-performance electro-magnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653. doi: 10.1021/acsnano.0c01635
    [26] 李素琴, 李喜民, 刘 刚. 飞机用电磁屏蔽橡胶材料[J]. 化工新型材料, 2014, 42(1):177-178.

    LI S Q, LI X M, LIU G, et al. Study on electromanetic shielding rubble materials used in aerospace[J]. New Chemical Materials,2014,42(1):177-178(in Chinese).
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2022-12-24
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-01-14

目录

    /

    返回文章
    返回