留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能

张艳 马忠雷 李桢 景佳瑶 邵亮

张艳, 马忠雷, 李桢, 等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 40(11): 6407-6415. doi: 10.13801/j.cnki.fhclxb.20230109.003
引用本文: 张艳, 马忠雷, 李桢, 等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 40(11): 6407-6415. doi: 10.13801/j.cnki.fhclxb.20230109.003
ZHANG Yan, MA Zhonglei, LI Zhen, et al. Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6407-6415. doi: 10.13801/j.cnki.fhclxb.20230109.003
Citation: ZHANG Yan, MA Zhonglei, LI Zhen, et al. Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6407-6415. doi: 10.13801/j.cnki.fhclxb.20230109.003

轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能

doi: 10.13801/j.cnki.fhclxb.20230109.003
基金项目: 国家自然科学基金(52273083;51903145); 陕西省重点研发计划项目(2023-YBGY-476);中央高校基本科研业务费专项资金(D5000210627)
详细信息
    通讯作者:

    马忠雷,博士,副教授,硕士生导师,研究方向为功能高分子复合材料 E-mail: mazl@nwpu.edu.cn;

    邵亮,博士,教授,博士生导师,研究方向为功能高分子复合材料 E-mail: shaoliang@sust.edu.cn

  • 中图分类号: TB332

Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels

Funds: National Natural Science Foundation of China (52273083; 51903145); Key Research and Development Project of Shaanxi Province (2023-YBGY-476); Fundamental Research Funds for the Central Universities (D5000210627)
  • 摘要: 随着5G通讯和可穿戴电子设备等高集成化和高功率化的快速发展,由电磁波引起的电磁干扰和电磁污染问题日益严重,亟需研发轻质高强且环境友好的电磁屏蔽复合材料。本文以生物质细菌纤维素(BC)为基体,导电Ti3C2Tx MXene为功能填料,通过液氮定向冷冻-冷冻干法制备轻质高强定向多孔结构MXene/BC复合气凝胶。深入研究了Ti3C2Tx MXene质量分数对复合气凝胶微观结构、导电性能、力学性能和电磁屏蔽性能的影响规律。结果表明:当Ti3C2Tx MXene质量分数为40wt%时,复合气凝胶的密度仅为18.3 mg/cm3,电导率和X波段电磁屏蔽效能 (EMI SE)均达到最大,分别为459.3 S/cm和72 dB (厚度为4 mm)。由于BC和Ti3C2Tx MXene之间存在丰富的氢键相互作用,复合气凝胶在30%应变下压缩强度达到38.3 kPa,较纯BC气凝胶提升了116.1%。

     

  • 图  1  定向多孔结构MXene/生物质细菌纤维素(BC)复合气凝胶的制备示意图

    Figure  1.  Schematic diagram for preparation of MXene/bacterial cellulose (BC) composite aerogels

    图  2  Ti3AlC2 (a)和Ti3C2Tx MXene (b)的SEM图像;Ti3C2Tx MXene的TEM图像(c)和XRD图谱(d)

    Figure  2.  SEM images of Ti3AlC2 (a) and Ti3C2Tx MXene (b); TEM images (c) and XRD patterns (d) of Ti3C2Tx MXene

    图  3  定向多孔结构 MXene/BC 复合气凝胶的数码照片((a)~(e))和相应不同放大倍数下的SEM图像((a')~(e''))

    Figure  3.  Digital photos ((a)~(e)) and corresponding SEM images ((a')~(e'')) of MXene/BC composite aerogels with directional porous structures

    图  4  Ti3C2Tx MXene质量分数为30wt%时MXene/BC复合气凝胶的顶视(a)和侧视(b) SEM图像

    Figure  4.  Top view (a) and side view (b) SEM images of MXene/BC composite aerogels with the Ti3C2Tx MXene mass fraction of 30wt%

    图  5  BC、Ti3C2Tx MXene和MXene/BC复合气凝胶的XRD图谱(a)、XPS图谱(b)和FTIR图谱(c)

    Figure  5.  XRD patterns (a), XPS spectra (b) and FTIR spectra (c) of BC, Ti3C2Tx MXene and MXene/BC composite aerogels

    图  6  不同Ti3C2Tx MXene质量分数MXene/BC复合气凝胶的质量密度

    Figure  6.  Mass densities of the MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions

    图  7  (a)不同Ti3C2Tx MXene质量分数MXene/BC复合气凝胶的压缩应力-应变曲线;(b)承载500 g砝码的MXene/BC复合气凝胶数码照片

    Figure  7.  (a) Compression stress-strain curves of MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions; (b) Digital photos of MXene/BC composite aerogels loaded with 500 g

    图  8  (a)不同Ti3C2Tx MXene质量分数MXene/BC复合气凝胶的电导率;(b) MXene/BC 复合气凝胶集成电路点亮LED 灯的数码照片

    Figure  8.  (a) Electrical conductivities of MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions; (b) Digital photo of MXene/BC composite aerogel integrated circuits illuminating LED

    图  9  不同Ti3C2Tx MXene质量分数MXene/BC复合气凝胶电磁屏蔽效能(EMI SE) (a)和反射损耗(SER)、吸收损耗(SEA)和总电磁屏蔽效能(SET)(b);(c)单位厚度比屏蔽效能(SSE/t);(d)电磁屏蔽效率;(e)试样厚度对30wt%Ti3C2Tx MXene复合气凝胶EMI SE的影响;(f)电磁屏蔽机制

    Figure  9.  Electromagnetic interference shielding effectiveness (EMI SE) (a) and SE reflection (SER), SE absorption (SEA), SE total (SET) (b) of MXene/BC composite aerogels with different Ti3C2Tx MXene mass fractions; (c) Specific shielding effectiveness per unit thickness (SSE/t); (d) Electromagnetic shielding efficiency; (e) Effects of thickness on the EMI SE of composite aerogels with 30wt%Ti3C2Tx MXene; (f) Electromagnetic shielding mechanism

  • [1] YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. doi: 10.1002/adma.201906769
    [2] ZHANG M, CAO M S, SHU J C, et al. Electromagnetic absorber converting radiation for multifunction[J]. Materials Science and Engineering: R: Reports,2021,145:100627. doi: 10.1016/j.mser.2021.100627
    [3] YI P, ZOU H H, YU Y H, et al. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles[J]. ACS Nano,2022,16(9):14490-14502. doi: 10.1021/acsnano.2c04863
    [4] DAI Y, WU X Y, LI L L, et al. 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broad­band electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2022,10(21):11375-11385. doi: 10.1039/D2TA01388F
    [5] 李姝颖, 姜玉莹, 戴会娟, 等. 面向5G毫米波的绿色多性能电磁屏蔽材料[J]. 复合材料学报, 2023, 40(5):2688-2698.

    LI Shuying, JIANG Yuying, DAI Huijuan, et al. Green multi-performances electromagnetic shielding material for 5G mm-wave[J]. Acta Materiae Compositae Sinica,2023,40(5):2688-2698(in Chinese).
    [6] WANG T, YU W C, SUN W J, et al. Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding[J]. Composites Science and Technology,2020,200:108446. doi: 10.1016/j.compscitech.2020.108446
    [7] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5):1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003

    ZHANG Menghui, MA Zhonglei, MA Jianzhong, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica,2021,38(5):1358-1370(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201208.003
    [8] CHEN J L, SHEN B, JIA X C, et al. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions[J]. Materials Today Physics,2022,24:100695. doi: 10.1016/j.mtphys.2022.100695
    [9] XU J A, ZHANG X A, ZHAO Z B, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties[J]. Small,2021,17(33):2102032. doi: 10.1002/smll.202102032
    [10] LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [11] HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano,2020,14(1):688-697.
    [12] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small,2018,14(45):1802479. doi: 10.1002/smll.201802479
    [13] WANG L, SONG P, LIN C T, et al. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding[J]. Research,2020,2020:4093732.
    [14] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [15] LIANG C B, RUAN K P, ZHANG Y L, et al. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances[J]. ACS Applied Materials & Interfaces,2020,12(15):18023-18031.
    [16] MA Z L, XIANG X L, SHAO L A, et al. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing[J]. Angewandte Chemie International Edition,2022,61(15):202200705.
    [17] SONG J W, CHEN C J, YANG Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano,2018,12(1):140-147. doi: 10.1021/acsnano.7b04246
    [18] ZENG Z H, WANG C X, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science,2020,7(15):2000979. doi: 10.1002/advs.202000979
    [19] MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding[J]. Chemical Engineering Journal,2021,403:126438. doi: 10.1016/j.cej.2020.126438
    [20] WU Z Y, LI C, LIANG H W, et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie,2013,125(10):2997-3001. doi: 10.1002/ange.201209676
    [21] CHEN X, YUAN F S, ZHANG H, et al. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials[J]. Journal of Materials Science,2016,51(12):5573-5588. doi: 10.1007/s10853-016-9899-2
    [22] 李桢, 马忠雷, 康松磊, 等. 细菌纤维素@Fe3O4/AgNWs复合薄膜的制备与电磁屏蔽性能[J]. 精细化工, 2022, 39(6):1162-1169, 1211.

    LI Zhen, MA Zhonglei, KANG Songlei, et al. Preparation and electromagnetic shielding properties of bacterial cellulose@Fe3O4/AgNWs composite films[J]. Fine Chemicals,2022,39(6):1162-1169, 1211(in Chinese).
    [23] MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(7):8368-8382. doi: 10.1021/acsnano.0c02401
    [24] ZHAO B, MA Z L, SUN Y Y, et al. Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances[J]. Small Structures,2022,3(10):2200162. doi: 10.1002/sstr.202200162
    [25] CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653. doi: 10.1021/acsnano.0c01635
    [26] 李素琴, 李喜民, 刘刚. 飞机用电磁屏蔽橡胶材料[J]. 化工新型材料, 2014, 42(1):177-178.

    LI Suqin, LI Ximin, LIU Gang. Study on electromanetic shielding rubble materials used in aerospace fields[J]. New Chemical Materials,2014,42(1):177-178(in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  515
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2022-12-24
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回