留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻结状态聚乙烯醇纤维/水泥基复合材料抗压本构模型

刘佳鑫 尹立强 刘曙光 闫长旺 张菊 王萧萧

刘佳鑫, 尹立强, 刘曙光, 等. 冻结状态聚乙烯醇纤维/水泥基复合材料抗压本构模型[J]. 复合材料学报, 2022, 39(5): 2356-2368. doi: 10.13801/j.cnki.fhclxb.20210622.002
引用本文: 刘佳鑫, 尹立强, 刘曙光, 等. 冻结状态聚乙烯醇纤维/水泥基复合材料抗压本构模型[J]. 复合材料学报, 2022, 39(5): 2356-2368. doi: 10.13801/j.cnki.fhclxb.20210622.002
LIU Jiaxin, YIN Liqiang, LIU Shuguang, et al. Compressive constitutive model of polyvinyl alcohol fiber/cement composite material in frozen state[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2356-2368. doi: 10.13801/j.cnki.fhclxb.20210622.002
Citation: LIU Jiaxin, YIN Liqiang, LIU Shuguang, et al. Compressive constitutive model of polyvinyl alcohol fiber/cement composite material in frozen state[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2356-2368. doi: 10.13801/j.cnki.fhclxb.20210622.002

冻结状态聚乙烯醇纤维/水泥基复合材料抗压本构模型

doi: 10.13801/j.cnki.fhclxb.20210622.002
基金项目: 国家自然科学基金 (51968056;51768051);内蒙古自治区科技创新引导重点项目(KCBJ2018016);内蒙古自治区科技成果转化项目(2019CG072);内蒙古工业大学科学研究项目(ZZ202003)
详细信息
    通讯作者:

    尹立强,博士,讲师,研究方向为纤维水泥基复合材料 E-mail:yinlq@imut.edu.cn

  • 中图分类号: TU528.572

Compressive constitutive model of polyvinyl alcohol fiber/cement composite material in frozen state

  • 摘要: 为了研究冻融循环后的聚乙烯醇纤维/水泥基复合材料在冻结状态下的抗压服役情况,设计了冻结聚乙烯醇纤维/水泥基复合材料抗压试验,先对试样进行0~300次的冻融循环,冻融循环试验后在−18℃的持续低温环境下对试样进行抗压试验,分析试样的抗压应力-应变关系及影响机制。在此基础上,结合等效应力原理和统计损伤理论,建立了冻结状态聚乙烯醇纤维/水泥基复合材料抗压本构模型,讨论了损伤变量随冻融循环次数的演化特征。结果表明:随着冻融循环次数的增加,冻结状态下聚乙烯醇纤维/水泥基复合材料的抗压峰值强度降低,峰值应变增加,极限破坏时脆性特征显著,高冻融循环次数下试样的弹性模量主要由试样中的孔隙冰来提供。建立的模型可以较好地预测实际经受冻融循环作用后的聚乙烯醇纤维/水泥基复合材料在冻结状态下的抗压应力-应变关系,冻融损伤变量和总损伤变量与冻融次数有显著相关性。

     

  • 图  1  冻结PVA/ECC抗压试验流程图

    Figure  1.  Flow chart of freezing PVA/ECC compressive test

    图  2  冻结PVA/ECC抗压试验实况

    Figure  2.  Actual situation of PVA/ECC compression test under freezing condition

    图  3  不同冻融循环次数(FTs)下PVA/ECC抗压应力-应变曲线:(a)融化状态;(b)冻结状态

    Figure  3.  PVA/ECC compressive stress-strain curves after different freeze thaw cycles (FTs): (a) Thawing; (b) Freezing

    图  4  冻融200次PVA/ECC抗压破坏形态:(a)融化状态;(b)冻结状态

    Figure  4.  Compressive failure mode of PVA/ECC after 200 freeze thaw cycles: (a) Thawing; (b) Freezing

    图  5  PVA/ECC试样抗压峰值强度

    Figure  5.  Peak compressive strength of PVA/ECC specimen

    图  6  PVA/ECC试样抗压峰值强度损失率

    Figure  6.  Compressive peak strength loss rate of PVA/ECC specimen

    图  7  PVA/ECC抗压峰值强度增益比

    Figure  7.  Compressive peak strength gain ratio of PVA/ECC

    图  8  PVA/ECC试样抗压峰值应变

    Figure  8.  Peak compressive strain of PVA/ECC specimen

    图  9  PVA/ECC试样抗压弹性模量

    Figure  9.  Compressive modulus of elasticity of PVA/ECC specimen

    图  10  不同参数值对PVA/ECC试样抗压应力-应变曲线的影响

    Figure  10.  Influence of different parameter values on the compressive stress-strain curves of PVA/ECC specimens

    图  11  不同冻融循环次数下PVA/ECC抗压本构模型参数的变化规律

    Figure  11.  Variation of parameters of PVA/ECC compressive constitutive model under different freeze-thaw cycles

    图  12  PVA/ECC抗压理论模型与试验结果对比

    Figure  12.  Comparison between theoretical model and experimental results of PVA/ECC compression

    图  13  不同冻融循环次数下PVA/ECC试样冻融损伤变量Dn

    Figure  13.  Freeze thaw damage variables Dn of PVA/ECC specimens under different freeze thaw cycles

    图  14  不同冻融循环次数下PVA/ECC试样总损伤变量D

    Figure  14.  Total damage variables D of PVA/ECC specimens under different freeze-thaw cycles

    表  1  聚乙烯醇(PVA)纤维性能指标

    Table  1.   Performance index of polyvinyl alcohol fiber (PVA) fiber

    Tensile strength
    /MPa
    Young's modulus
    /GPa
    Diameter
    /μm
    Length
    /mm
    Elongation
    /%
    16004040126
    下载: 导出CSV

    表  2  PVA/水泥基复合材料(ECC)原材料配合比

    Table  2.   Mix proportion of raw materials of PVA/engineered cementitious composite (ECC)

    Cement/
    (kg·m−3)
    Fly ash/
    (kg·m−3)
    Silica sand/
    (kg·m−3)
    Water/
    (kg·m−3)
    Superplasticizer/
    (kg·m−3)
    mw/mb PVA fiber/
    vol%
    252.641010.57454.76303.1717.680.242.00
    Notes: mw—Water consumption; mb—Cementitious material consumption; mw/mb—Water binder ratio.
    下载: 导出CSV

    表  3  PVA/ECC抗压理论模型相关参数

    Table  3.   Related parameters of PVA/ECC compression theoretical model

    Freeze thaw cyclesParameter aParameter bRelated coefficient R2
    0 0.58632 0.78675 0.85045
    100 0.82549 0.98783 0.84895
    200 0.63271 1.18297 0.87027
    300 0.66074 1.52024 0.95792
    下载: 导出CSV
  • [1] TANG S W, YAO Y, ANDRADE C, et al. Recent durability studies on concrete structure[J]. Cement and Concrete Research,2015,78:143-154. doi: 10.1016/j.cemconres.2015.05.021
    [2] AÏTCIN P C. The durability characteristics of high perfor-mance concrete: A review[J]. Cement and Concrete Composites,2003,25(45):409-420.
    [3] ALEXANDER M, BENTUR A, MINDESS S. Durability of concrete: Design and construction[M]. Boca Raton: CRC Press, 2017.
    [4] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious compo-sites[J]. Materials and Structures,1995,28(10):586-595. doi: 10.1007/BF02473191
    [5] LI V C. Engineered cementitious composites (ECC): Bendable concrete for sustainable and resilient infrastructure[M]. Berlin: Springer, 2019.
    [6] ZHANG Z, ZHANG Q. Matrix tailoring of engineered cementitious composites (ECC) with non-oil-coated, low tensile strength PVA fiber[J]. Construction and Building Materials,2018,161:420-431. doi: 10.1016/j.conbuildmat.2017.11.072
    [7] PAN Z, WU C, LIU J, et al. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)[J]. Construction and Building Materials,2015,78:397-404. doi: 10.1016/j.conbuildmat.2014.12.071
    [8] MUKTADIR M G, ALAM M I F, RAHMAN A, et al. Compari-son of compressive strength and flexural capacity between engineered cementitious composites (bendable concrete) and conventional concrete used in Bangladesh[J]. Journal of Materials and Engineering Structures,2020,7(1):73-82.
    [9] PAUL S C, BABAFEMI A J. A review of the mechanical and durability properties of strain hardening cement-based composite (SHCC)[J]. Journal of Sustainable Cement-Based Materials,2018,7(1):57-78. doi: 10.1080/21650373.2017.1394236
    [10] GENCTURK B, HOSSEINI F. Evaluation of reinforced concrete and reinforced engineered cementitious composite (ECC) members and structures using small-scale testing[J]. Canadian Journal of Civil Engineering,2015,42(3):164-177. doi: 10.1139/cjce-2013-0445
    [11] LEPECH M D, LI V C. Application of ECC for bridge deck link slabs[J]. Materials and Structures,2009,42(9):1185. doi: 10.1617/s11527-009-9544-5
    [12] ROKUGO K, KANDA T, YOKOTA H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials and Structures,2009,42(9):1197. doi: 10.1617/s11527-009-9541-8
    [13] 徐世烺. 浙江大学研发出能弯曲的混凝土[J]. 商品混凝土, 2018(11):14.

    XU Shilang. Zhejiang University develops bending concrete[J]. Ready-Mixed Concrete,2018(11):14(in Chinese).
    [14] 国家技术监督局, 中华人民共和国建设部. 建筑气候区划标准: GB 50178—1993[S]. 北京: 计划出版社, 1993.

    State Bureau of Quality and Technical Supervision, Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for building climate zonin: GB 50178—1993[S]. Beijing: Planning Press, 1993(in Chinese).
    [15] SMITH P F. Architecture in a climate of change: A guide to sustainable design[M]. Woburn: Architectural Press, 2001.
    [16] 曾强. 水泥基材料低温结晶过程孔隙力学研究[D]. 北京: 清华大学, 2012.

    ZENG Qiang. Study on pore mechanics of cementitious materials during low temperature crystallization[D]. Beijing: Tsinghua University, 2012(in Chinese).
    [17] LUO Q, LIU D X, QIAO P, et al. Microstructural damage characterization of concrete under freeze-thaw action[J]. International Journal of Damage Mechanics,2018,27(10):1551-1568. doi: 10.1177/1056789517736573
    [18] ŞAHMARAN M, LACHEMI M, LI V C. Assessing the durabi-lity of engineered cementitious composites under freezing and thawing cycles[J]. Journal of ASTM International,2009,6(7):1-13.
    [19] YUN H D, ROKUGO K. Freeze-thaw influence on the flexural properties of ductile fiber-reinforced cementitious composites (DFRCCs) for durable infrastructures[J]. Cold Regions Science and Technology,2012,78:82-88. doi: 10.1016/j.coldregions.2012.02.002
    [20] XU S, CAI X. Mechanics behavior of ultra high toughness cementitious composites after freezing and thawing[J]. Journal of Wuhan University of Technology-Materials Science Edition,2010,25(3):509-514. doi: 10.1007/s11595-010-0033-z
    [21] 龙广成, 杨振雄, 白朝能, 等. 荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型[J]. 硅酸盐学报, 2019, 47(7):855-864.

    LONG G C, YANG Zhenxiong, BAI Chaoneng, et al. Durability and damage constitutive model of filling layer self-compacting concrete subjected to coupling action of freeze-thaw cycles and load[J]. Journal of the Chinese Ceramic Society,2019,47(7):855-864(in Chinese).
    [22] 龙广成, 刘赫, 马昆林, 等. 考虑冻融作用的混凝土单轴压缩损伤本构模型[J]. 中南大学学报(自然科学版), 2018, 49(8):1884-1892.

    LONG Guangcheng, LIU He, MA Kunlin, et al. Uniaxial compression damage constitutive model of concrete subjected to freezing and thawing[J]. Journal of Central South University (Science and Technology),2018,49(8):1884-1892(in Chinese).
    [23] 苏骏, 钱维民, 郭锋, 等. 超低温对高韧性水泥基复合材料抗压韧性影响试验研究[J]. 复合材料学报, 2021, 38(12):4325-4336.

    SU Jun, QIAN Weimin, GUO Feng, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of high toughness ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica,2021,38(12):4325-4336(in Chinese).
    [24] 过震文, 刘小方, 段昕智, 等. 超高性能混凝土在环境温度变化下的力学性能试验研究[J]. 复合材料学报, 2021, 38(10):3495-3503.

    GUO Zhenwen, LIU Xiaofang, DUAN Xinzhi, et al. Experiment study on mechanical properties of ultra high perfor-mance concrete under ambient temperature change[J]. Acta Materiae Compositae Sinica,2021,38(10):3495-3503(in Chinese).
    [25] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture Publishing & Media Co., Ltd., 2009(in Chinese).
    [26] 中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.

    Ministry of Industry and Information Technology of the People's Republic of China. Test method for mechanical properties of high ductility fiber reinforced cement based composites: JC/T 2461—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).
    [27] ROKUGO K, KANDA T, YOKOTA H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials and Structures, 2009, 42(9): 1197.
    [28] LEMAITRE J. How to use damage mechanics[J]. Nuclear Engineering and Design,1984,80(2):233-245. doi: 10.1016/0029-5493(84)90169-9
    [29] 余寿文. 损伤力学[M]. 北京: 清华大学出版社, 1997: 26-32.

    YU Shouwen. Damage mechanics[M]. Beijing: Tsinghua University Press, 1997: 26-32(in Chinese).
    [30] 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京: 清华大学, 2009.

    DUAN An. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D]. Beijing: Tsinghua University, 2009(in Chinese).
    [31] 袁小清, 刘红岩, 刘京平. 冻融荷载耦合作用下节理岩体损伤本构模型[J]. 岩石力学与工程学报, 2015, 34(8):1602-1611.

    YUAN Xiaoqing, LIU Hongyan, LIU Jingping. A damage model of jointed rock under coupled action of freezing and thawing[J]. Chinese Journal of Rock Mechanics,2015,34(8):1602-1611(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  375
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-05-25
  • 录用日期:  2021-06-11
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回