留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究

龚明 张代军 张嘉阳 付善龙 李军 陈祥宝

龚明, 张代军, 张嘉阳, 等. 原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究[J]. 复合材料学报, 2023, 40(3): 1740-1750. doi: 10.13801/j.cnki.fhclxb.20220516.002
引用本文: 龚明, 张代军, 张嘉阳, 等. 原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究[J]. 复合材料学报, 2023, 40(3): 1740-1750. doi: 10.13801/j.cnki.fhclxb.20220516.002
GONG Ming, ZHANG Daijun, ZHANG Jiayang, et al. Damage and repair study of in-situ polymerized carbon fiber reinforced PMMA composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1740-1750. doi: 10.13801/j.cnki.fhclxb.20220516.002
Citation: GONG Ming, ZHANG Daijun, ZHANG Jiayang, et al. Damage and repair study of in-situ polymerized carbon fiber reinforced PMMA composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1740-1750. doi: 10.13801/j.cnki.fhclxb.20220516.002

原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究

doi: 10.13801/j.cnki.fhclxb.20220516.002
基金项目: 国家重点研发项目(2020YFC1910203)
详细信息
    通讯作者:

    张代军,博士,研究员,研究方向为树脂基复合材料  E-mail:15810534483@139.com

  • 中图分类号: TB332

Damage and repair study of in-situ polymerized carbon fiber reinforced PMMA composites

Funds: National Key Research and Development Project (2020YFC1910203)
  • 摘要: 基于热塑性复合材料易修复的特性,开展了碳纤维增强聚甲基丙烯酸甲酯(PMMA)基复合材料修复技术研究。研究了工艺温度、压力和时间对复合材料力学性能的影响规律。结果表明:在200℃、0.75 MPa压力下保持10 min可以获得优化的复合材料力学性能。引入低速冲击损伤,使用热压修复工艺修复碳纤维增强PMMA基复合材料的损伤。通过X射线断层扫描测试、超声波无损检测技术和断面摄像方法评估了此复合材料的损伤行为和修复效果。结果表明:低速冲击对碳纤维增强PMMA基复合材料的损伤分为低变形量区域的纵向开裂与分层和高变形量区域的纤维断裂与基体失效的混合模式。碳纤维增强PMMA基复合材料损伤试样经过热压修复后,损伤外形恢复良好,损伤区域大小显著减少,内部的开裂和分层等损伤恢复良好,复合材料压缩强度从140 MPa恢复至263 MPa,达到未损伤复合材料压缩性能(307 MPa)的85.7%。

     

  • 图  1  (a) 试样支撑框;(b) 热压修复工艺

    Figure  1.  (a) Support frame of samples; (b) Hot press repair process

    图  2  聚甲基丙烯酸甲酯(PMMA)树脂基体 (a) 和PMMA基复合材料 (b) 的玻璃化转变温度Tg

    Figure  2.  Glass transition temperature Tg of polymethyl methacrylate (PMMA) resin (a) and PMMA composite (b)

    图  3  PMMA树脂基体流变测试结果

    Figure  3.  Rheological test results of PMMA resins

    图  4  处理压力为0.75 MPa时PMMA基复合材料弯曲强度 (a) 和短梁剪切强度 (b) 与处理温度关系

    Figure  4.  Relationship between the bending strenght (a) and short-beam shear strength (b) of PMMA composites and the treatment temperature under 0.75 MPa

    图  5  处理温度为200℃时PMMA基复合材料弯曲强度 (a) 和短梁剪切强度 (b) 与处理压力关系

    Figure  5.  Relationship between the bending strenght (a) and short-beam shear strength (b) of PMMA composites and the treatment pressure under 200℃

    图  6  碳纤维增强PMMA基复合材料修复前(左)和修复后(右)

    Figure  6.  Carbon fiber reinforced PMMA composites before repair (left) and after repair (right)

    图  7  碳纤维增强PMMA基复合材料修复前(左)和修复后(右)的损伤状态

    Figure  7.  Damage conditions of carbon fiber reinforced PMMA composites before repair (left) and after repair (right)

    图  8  冲击损伤PMMA基复合材料试样修复前(左)后(右)横截面CT扫描结果对比

    Figure  8.  Comparison of cross section CT scan results before (left) and after (right) repair of impact damaged PMMA composites samples

    图  9  冲击损伤试样修复前(左)后(右)PMMA基复合材料厚度方向截面CT扫描结果对比

    Figure  9.  Comparison of CT scan results of thickness direction section of PMMA composites before and after impact damage repair

    图  10  修复前后PMMA基复合材料内部缺陷分布区域

    Figure  10.  Defect area of PMMA composites before and after repair

    L1—Tip diameter; L2—Base diameter

    图  11  碳纤维增强PMMA基复合材料试样不同损伤部位修复后取样图

    Figure  11.  Diagrams of different damaged parts of carbon fiber reinforced PMMA composite samples after repair

    图  12  碳纤维增强PMMA基复合材料不同损伤部位缺陷取样图

    Figure  12.  Defect sampling diagram of carbon fiber reinforced PMMA composites at different injury sites

    图  13  碳纤维增强PMMA基复合材料冲击后分层缺陷

    Figure  13.  Post-impact delamination defects of carbon fiber reinforced PMMA composites

    图  14  碳纤维增强PMMA基复合材料纵向开裂与分层缺陷的伴随出现形貌

    Figure  14.  Concomitant morphology of longitudinal cracking and delamination defects of carbon fiber reinforced PMMA composites

    图  15  未冲击试样、冲击损伤试样与修复后PMMA基复合材料试样压缩强度对比

    Figure  15.  Comparison of compressive strength of unimpacted, damaged and repaired PMMA composite samples

    图  16  损伤后修复PMMA基复合材料试样冲击后压缩破坏形貌:(a) 正视;(b) 侧视; (c) 后视

    Figure  16.  Compression failure morphology of PMMA composites after impact damage repaired: (a) Front view; (b) End view; (c) Back view

    图  17  损伤和修复PMMA基复合材料冲击后压缩强度曲线

    Figure  17.  Compressive strength curves of damaged and repaired PMMA composites after impact

    表  1  整体成型与粘接PMMA基复合材料试样修复结果对比

    Table  1.   Comparison of repair results between one-piece and bonded PMMA composite samples

    Specimen
    number
    Treatment processBending strength/MPaBending modulus/GPaShort-beam shear strength/MPa
    One-pieceBondedOne-pieceBondedOne-pieceBonded
    10.1 MPa/180℃/10 min56550347.341.937.140.9
    20.1 MPa/200℃/10 min22413634.925.920.419.7
    30.4 MPa/200℃/10 min70850139.544.152.647.5
    40.75 MPa/160℃/10 min70061954.546.154.119.0
    50.75 MPa/180℃/10 min72269650.944.452.242.9
    60.75 MPa/200℃/10 min69363950.244.250.146.1
    70.75 MPa/220℃/10 min19429838.236.614.523.8
    81.0 MPa/180℃/10 min68462843.838.453.353.5
    91.0 MPa/200℃/10 min64252544.137.849.950.2
    101.0 MPa/200℃/30 minBulgingBulgingBulgingBulgingBulgingBulging
    下载: 导出CSV

    表  2  PMMA基复合材料修复前后试样厚度

    Table  2.   Thicknesses of PMMA composite samples before and after repair

    Before/mmAfter/mm
    13.994.02
    23.974.00
    33.984.00
    44.024.03
    Average3.994.01
    下载: 导出CSV
  • [1] ANDREW J J, ARUMUGAM V, SARAVANAKUMAR K, et al. Compression after impact strength of repaired GFRP composite laminates under repeated impact loading[J]. Composite Structures,2015,133:911-920.
    [2] SLATTERY P G, MCCARTHY C T, O'HIGGINS R M. Assessment of residual strength of repaired solid laminate composite materials through mechanical testing[J]. Compo-site Structures,2016,147:122-130.
    [3] CHIU W K, ZHOU Z, WANG J, et al. Battle damage repair of a helicopter composite main rotor blade[J]. Composites Part B: Engineering,2012,43(2):739-753. doi: 10.1016/j.compositesb.2011.07.014
    [4] REYES G, SHARMA U. Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact[J]. Composite Structures,2010,92(2):523-531. doi: 10.1016/j.compstruct.2009.08.038
    [5] GANESH V V, CHAWLA N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix compo-sites: Experiments and microstructure-based simulation[J]. Materials Science & Engineering A,2005,391(1-2):342-353.
    [6] NAEBE M, ABOLHASANI M M, KHAYYAM H, et al. Crack damage in polymers and composites: A review[J]. Polymer Reviews,2016,56(1):31-69. doi: 10.1080/15583724.2015.1078352
    [7] KANG T J, KIM C. Impact energy absorption mechanism of largely deformable composites with different reinforcing structures[J]. Fibers & Polymers,2000,1(1):45-54.
    [8] BALLERE L, VIOT P, LATAILLADE J L, et al. Damage tolerance of impacted curved panels[J]. International Journal of Impact Engineering,2009,36(2):243-253. doi: 10.1016/j.ijimpeng.2008.03.004
    [9] TAMIN M N. Micromechanical analysis of mode I crack growth in carbon fibre reinforced polymers[M]//Damage and Fracture of Composite Materials and Structures. Berlin: Springer, 2012.
    [10] RKOLOOR S, ABDUL-LATIFJ A, GONG X, et al. Evolution characteristics of delamination damage in CFRP compo-sites under transverse loading[M]. Berlin: Springer, 2012.
    [11] TAMIN M N. Damage and fracture of composite materials and structures[J]. Advanced Structured Materials,2012,18(2):265-273.
    [12] GUILLAUMAT L, BATSALE J C, MOURAND D. Real time infrared image processing for the detection of delamination in composite plates[J]. Composites Part A: Applied Science & Manufacturing,2004,35(7-8):939-944. doi: 10.1016/j.compositesa.2004.01.021
    [13] USAMENTIAGA R, VENEGAS P, GUEREDIAGA J, et al. Automatic detection of impact damage in carbon fiber composites using active thermography[J]. Infrared Phy-sics & Technology,2013,58:36-46.
    [14] MAIER A, SCHMIDT R, OSWALD-TRANTA B, et al. Non-destructive thermography analysis of impact damage on large-scale CFRP automotive parts[J]. Materials,2014,7(1):413-429. doi: 10.3390/ma7010413
    [15] IBRAHIM M E, SMITH R A, WANG C H. Ultrasonic detection and sizing of compressed cracks in glass- and carbon-fibre reinforced plastic composites[J]. NDT & E International,2017,92:111-121.
    [16] CASTAINGS M, SINGH D, VIOT P. Sizing of impact damages in composite materials using ultrasonic guided waves[J]. NDT & E International,2012,46:22-31.
    [17] POLIMENO U, MEO M, ALMOND D P, et al. Detecting low velocity impact damage in composite plate using nonlinear acoustic/ultrasound methods[J]. Applied Compo-site Materials,2010,17(5):481-488. doi: 10.1007/s10443-010-9168-5
    [18] CLOETENS P, PATEYRON-SALOME M, BUFFIERE J Y, et al. Observation of microstructure and damage in materials by phase sensitive radiography and tomography[J]. Journal of Applied Physics,1997,81(9):5878-5886. doi: 10.1063/1.364374
    [19] DAVIS G R, ELLIOTT J C, LEE W K, et al. Fatigue cracks in aluminum samples studied with X-ray phase contrast imaging and with absorption microtomography[J]. Advances in X-Ray Analysis, 2002, 45: 123-126.
    [20] WRIGHT P, FU X, SINCLAIR I, et al. Ultra high resolution computed tomography of damage in notched carbon fiber—Epoxy composites[J]. Journal of Composite Materials,2008,42(19):1993-2002. doi: 10.1177/0021998308092211
    [21] KING A, JOHNSON G, ENGELBERG D, et al. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal[J]. Science,2008,321(5887):382-385. doi: 10.1126/science.1156211
    [22] POULSEN H F, NIELSEN S F, LAURIDSEN E M, et al. Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders[J]. Jour-nal of Applied Crystallography,2001,34(6):751-756. doi: 10.1107/S0021889801014273
    [23] LARSON B C, YANG W, ICE G E, et al. Three-dimensional X-ray structural microscopy with submicrometre resolution[J]. Nature,2002,415(6874):887-890. doi: 10.1038/415887a
    [24] ROLLAND H, SAINTIER N, WILSON P, et al. In situ X-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics: Effects of fibre orientation and relative humidity[J]. Composites Part B: Engi-neering,2017,109:170-186. doi: 10.1016/j.compositesb.2016.10.043
    [25] COSMI F, BERNASCONI A. Micro-CT investigation on fatigue damage evolution in short fibre reinforced polymers[J]. Composites Science & Technology,2013,79:70-76.
    [26] ASTM. Standard test method for glass transition tempera-ture (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D7028-07[S]. West Conshohocken: ASTM International, 2007.
    [27] ASTM. Standard test method for deflection temperature of plastics under flexural load in the edgewise position: ASTM D648-18[S]. West Conshohocken: ASTM International, 2018.
    [28] ASTM. Standard test method for measuring the damage re-sistance of a fiber-reinforced polymer matrix composite to a drop-weight Impact event: ASTM D7136/D7136 M-20[S]. West Conshohocken: ASTM International, 2020.
    [29] ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite laminates: ASTM D7137/D7137 M-17[S]. West Conshohocken: ASTM International, 2017.
    [30] WYPYCH G. Handbook of polymers: Second edition[M]. Toronto: ChemTec Publishing, 2016.
    [31] BOUVET C, RIVALLANT S. Damage tolerance of compo-site structures under low-velocity impact[J]. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures,2016,19:7-33.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  424
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 修回日期:  2022-04-19
  • 录用日期:  2022-05-03
  • 网络出版日期:  2022-05-16
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回