Research progress of biomass carbon@MnO2-based electrode materials for supercapacitors
-
摘要:
目的 基于能源危机、环境污染等问题,开发新型的高性能储能装置至关重要,超级电容器因具有高比能量、稳定性好等优异性能而受到研究者青睐。具有发达的孔径、较高的活性比表面积,且资源廉价丰富的生物质炭和最有应用前途的赝电容材料MnO复合具有取长补短的作用。本文主要介绍了生物质炭的来源、特点及制备方法,并介绍了生物质炭与MnO的复合制备方法及生物质炭@MnO复合材料用于超级电容器的研究现状,最后展望了生物质炭@MnO基超级电容器的发展趋势。生物质炭研究进展:相较于煤炭、石油焦等不可再生资源日益短缺,生物质炭材料具有来源广、成本低和绿色环保等优点,其前驱体主要来源一般为植物(木材、香蕉皮、茶叶、稻壳、柚皮等)、动物粪便、微生物细菌等天然产物,经高温热解碳化得到衍生碳材料。生物质炭材料形成的多级孔道结构稳定性好,比表面积、孔道结构和表面的官能团会对电化学性能产生重要影响,在超级电容器中具有很大的优势和前景。目前,生物质多孔碳的制备方法较为常用是化学活化法。化学活化法中活化剂的选择是主要影响到生物质炭电化学的因素。常使用的活化剂有碱、氯化锌和磷酸。尽管生物质炭在超级电容器中已被广泛应用,但在制备工艺、储能特性等方面仍存在诸多限制。实现对生物质炭材料的比表面积、孔径分布、结构特征、导电性以及表面官能团的有效调控,可提高生物质炭材料在超级电容器中的电化学性能。制备:生物质炭是一种绿色环保的电极材料,且稳定性高,循环寿命高,但它制备的超级电容器能量密度小,不适合大规模使用。MnO是可以提高生物质炭比电容的过渡金属氧化物,可为超级电容器提供赝电容。因此,通常将生物质碳与MnO复合制备高性能电极材料。以生物质炭为基底材料,生物质炭与MnO之间形成化学键,在生物质炭表面上包覆一层MnO。分别阐述了几种生物质炭@MnO电极材料的制备方法及研究现状,研究较多的三种制备方法为原位化学共沉淀法、电沉积法和水热法。原位化学共沉淀法通常在油浴或水浴中进行的,这种复合方法操作简单,该复合方法利用高锰酸钾的强氧化性,在生物质碳的表面进行还原沉积,制备的复合材料呈核壳结构,生物质炭为核部分,MnO为壳部分。采用电沉积法复合生物质碳和MnO,复合效果主要取决于生物炭材料的结构。利用水热法将生物炭和MnO复合,是MnO在生物质碳上扩展的一种方法,复合上的MnO呈花状结构,这种特殊的花状MnO增大比表面积和增强生物质碳材料的导电性。展望:目前,超级电容器是最具有应用前景的储能器件之一,与锂离子电池相比,超级电容器的循环稳定性更高,更加安全环保。将生物质材料变废为宝,通过碳化、活化制备生物质炭材料,可被广泛用作超级电容器的电极材料。尽管生物质炭@MnO材料制备的超级电容器的优点是很多储能器件无法比拟的,如其使用寿命是普通电池的几百倍,但目前制备及应用还不成熟,不同的生物质炭材料的微观形貌、性能差异性很大,与MnO复合方式及机理也存在差异,因而生物质炭@MnO基复合材料用于超级电容器实用化详细数据库需进一步探索。此外,MnO在生物质炭的沉积速度不易控制,过快易导致产物的孔隙堵塞,需要进一步探索复合电极材料的稳定制备技术,使生物质炭@MnO结构设计合理化和功能化。因此,生物质炭@MnO基复合材料制备超级电容器距离实现大规模商业应用还有很长的路要走,研究开发性能优良、产率高、经济效益好的生物质炭@MnO电极材料。 Abstract: Based on the problems of energy crisis and environmental pollution, it is very important to develop new high-performance energy storage devices. Supercapacitors are favored by researchers because of their high specific energy and good stability. Biomass carbon is obtained by pre-carbonization and activation of biomass materials, with developed pore size, high active specific surface area, and rich resources, which has good application prospects as a supercapacitor material. In order to meet the high specific capacity and high cycle stability of supercapacitors, the current effective method is to combine biomass carbon materials with pseudo capacitor materials. Transition metal oxide MnO2 has become the most promising pseudocapacitor material due to its high theoretical specific capacitance, wide potential window, low cost and environmental friendliness. The research shows that the specific capacitance and energy density of the supercapacitor made of the composite material of biomass carbon and transition metal oxide are significantly improved. This paper mainly introduces the source, characteristics and preparation methods of biomass carbon, also introduces the composite methods of biomass carbon and MnO2 and the research progress of biomass carbon@MnO2 composite materials, and finally looks forward to the development trend of biomass carbon@MnO2 based supercapacitors.-
Key words:
- biomass carbon /
- MnO2 /
- supercapacitors /
- preparation /
- research progress
-
图 3 (a) 无复合MnO2多孔碳复合材料;(b) 在油浴中复合1 h多孔碳@MnO2;(c) 在油浴中复合3 h多孔碳@MnO2;(d) 在油浴中复合8 h多孔碳@MnO2;(e) 在油浴中复合9 h多孔碳@MnO2;(f) 在油浴中复合15 h MnO2@多孔碳[42]
Figure 3. (a) No composite MnO2 porous carbon composite; (b) Porous carbon@MnO2 composite in oil bath for 1 h; (c) Porous carbon@MnO2 composite in oil bath for 3 h; (d) Porous carbon@MnO2 composite in oil bath for 8 h; (e) Porous carbon@MnO2 composite in oil bath for 9 h; (f) Porous carbon@MnO2 composite in oil bath for 15 h[42]
图 7 ((a), (b)) 沉积5 min活化生物质炭@MnO2的SEM和HR-SEM图像;((c), (d)) 沉积2 h碳化的生物质炭@MnO2的SEM和HR-SEM图像;((e), (f)) 沉积2 h碳化生物质炭@MnO2 TEM和HR-TEM图像(插图:选定区域电子衍射)[45]
Figure 7. ((a), (b)) SEM and HR-SEM images of 5 min activated biochar@MnO2 deposited; ((c), (d)) SEM and HR-SEM images of deposited 2 h carbonized biomass carbon@MnO2; ((e), (f)) TEM and HR-TEM images of deposited 2 h carbonized biomass carbon@MnO2(Inset: Electron diffraction in selected areas)[45]
图 9 ((a), (b)) KOH活化处理的多孔碳的SEM图像;(c) KOH活化处理的多孔碳的TEM图像;((d), (e)) 3 h水热复合多孔碳@MnO2 SEM图像;(f) 3 h水热复合多孔碳@MnO2的TEM图像;(g) 3 h水热复合多孔碳@MnO2 EDS图像[51]
Figure 9. ((a), (b)) SEM images of KOH activated porous carbon; (c) TEM image of KOH activated porous carbon; ((d), (e)) SEM images of 3 h hydrothermal composite MnO2@porous carbon; (f) TEM image of 3 h hydrothermal composite porous carbon@MnO2; (g) EDS diagram of 3 h hydrothermal composite porous carbon@MnO2[51]
图 10 (a) 25 mV/s时EC、MnO2和MnO2/EC复合材料的CV曲线;(b) 0.5 A/g时EC、MnO2和MnO2/EC复合材料的恒流充放电曲线;(c) MnO2/EC复合材料在10、25、50、75和100 mV/s下的CV曲线;(d) MnO2/EC复合材料在0.5、1.0、2.0、5.0和10 A/g下的恒流充放电曲线;(e) 不同电流密度下EC、MnO2和MnO2/EC复合材料的比电容;(f) EC、MnO2和MnO2/EC的电化学阻抗谱[52]
Figure 10. (a) CV curves of EC, MnO2 and MnO2/EC composites at 25 mV/s; (b) Galvanostatic charge/discharge curves of EC, MnO2 and MnO2/EC composites at 0.5 A/g; (c) CV curves of MnO2/EC composites at 10, 25, 50, 75 and 100 mV/s; (d) Galvanostatic charge/discharge curves of MnO2/EC composites at 0.5, 1.0, 2.0, 5.0 and 10 A/g; (e) Specific capacitance of EC, MnO2 and MnO2/EC composites at different current densities; (f) Electrochemical impedance spectroscopy of EC, MnO2 and MnO2/EC[52]
EC—Eggplant carbon; Z'—Real part of impedance; Z"—Imaginary part of impedance
表 1 木材、香蕉皮、茶叶、稻壳、柚皮、塔松、水稻秸秆的微观结构和电化学性能[28]
Table 1. Microstructure and electrochemical properties of wood, banana peel, tea, rice husk, pomelo peel, tarzon and rice straw[28]
Biomass carbon precursor Biomass carbon morphology Electrochemical performance Note: PC—Direct pyrolysis of wood chips; RC—PC delignified treatment; TARC—Carbonized wood chips; TARC-N—TARC treated twice in N2; KB—KHCO3; AC—Porous carbon; X—KHCO3(KOH)/HC mass radio; HC—Hydrothermal carbon. -
[1] ZHANG X Q, CHENG X B, ZHANG Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. Journal of Energy Chemistry,2016,25(6):967-984. doi: 10.1016/j.jechem.2016.11.003 [2] CHAO D L, XIA X H, ZHU C R, et al. Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance[J]. Nanoscale,2014,6(11):5691-5697. doi: 10.1039/C4NR01119H [3] CHENG Y W, LU S T, ZHANG H B, et al. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors[J]. Nano Letters,2012,12(8):4206-4211. doi: 10.1021/nl301804c [4] HE N F, YILDIZ O, PAN Q, et al. Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors[J]. Journal of Power Sources,2017,343:492-501. doi: 10.1016/j.jpowsour.2017.01.091 [5] HU M L, LIU Y H, ZHANG M, et al. Wire-type MnO2/multilayer graphene/Ni electrode for high-performance supercapacitors[J]. Journal of Power Sources,2016,335:113-120. doi: 10.1016/j.jpowsour.2016.10.043 [6] LEI W, LIU H P, XIAO J L, et al. Moss-derived mesoporous carbon as Bi-functional electrode materials for lithium-sulfur batteries and supercapacitors[J]. Nanomaterials,2019,9(1):84. doi: 10.3390/nano9010084 [7] ZHANG Z T, WANG L, LI Y M, et al. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor[J]. Advanced Energy Materials,2017,7(5):1601814. doi: 10.1002/aenm.201601814 [8] HTUT K Z, KIM M, LEE E, et al. Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors[J]. Synthetic Metals,2017,227:61-70. doi: 10.1016/j.synthmet.2017.03.005 [9] SANTINO L M, ACHARYA S, D'ARCY J M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors[J]. Journal of Materials Chemistry A,2017,5(23):11772-11780. doi: 10.1039/C7TA00369B [10] GUO D, ZHANG H M, YU X Z, et al. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors[J]. Journal of Materials Chemistry A,2013,1(24):7247-7254. doi: 10.1039/c3ta10909g [11] KULAL P M, DUBAL D P, LOKHANDE C D, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application[J]. Journal of Alloys and Compounds,2011,509(5):2567-2571. doi: 10.1016/j.jallcom.2010.11.091 [12] XU J, WANG Q F, WANG X W, et al. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth[J]. ACS Nano,2013,7(6):5453-5462. doi: 10.1021/nn401450s [13] 李学林. 二维Ti3C2TX基复合材料的改性及其超级电容器性能研究[D]. 西安: 陕西科技大学, 2021.LI Xuelin. Study on modification of two-dimensional Ti3C2TX-based composites and their supercapacitor properties[D]. Xi'an: Shaanxi University of Science and Technology, 2021(in Chinese). [14] LI X Y, HAN D, GONG Z Q, et al. Nest-like MnO2 nanowire/hierarchical porous carbon composite for high-performance supercapacitor from oily sludge[J]. Nanomaterials,2021,11(10):2715. doi: 10.3390/nano11102715 [15] DAI C C, WAN J F, YANG J, et al. H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors[J]. Applied Surface Science,2018,444:105-117. doi: 10.1016/j.apsusc.2018.02.261 [16] HOU J H, CAO C B, IDREES F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r [17] WEI W F, CUI X W, CHEN W X, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews,2011,40(3):1697-1721. doi: 10.1039/C0CS00127A [18] 宋晓琪, 雷西萍, 樊凯, 等. 基于生物质衍生炭在超级电容器中的研究进展[J]. 复合材料学报, 2023, 40(3):1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002SONG Xiaoqi, LEI Xiping, FAN Kai, et al. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(3):1328-1339(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220628.002 [19] CHEN Y D, LI S P, HO S H, et al. Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery[J]. Renewable and Sustainable Energy Reviews,2018,96:76-90. doi: 10.1016/j.rser.2018.07.028 [20] SHAN X F, WU J, ZHANG X T, et al. Review wood for application in electrochemical energy storage devices[J]. Cell Reports Physical Science,2021,2(12):100654. doi: 10.1016/j.xcrp.2021.100654 [21] TANG Z J, PEI Z X, WANG Z F, et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction[J]. Carbon,2018,130:532-543. doi: 10.1016/j.carbon.2018.01.055 [22] LV Y K, GAN L H, LIU M X, et al. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes[J]. Journal of Power Sources,2012,209:152-157. doi: 10.1016/j.jpowsour.2012.02.089 [23] SONG X Y, MA X L, LI Y, et al. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors[J]. Applied Surface Science,2019,487:189-197. doi: 10.1016/j.apsusc.2019.04.277 [24] XUE B C, JIN L, CHEN Z M, et al. The template effect of silica in rice husk for efficient synthesis of the activated carbon based electrode material[J]. Journal of Alloys and Compounds,2019,789:777-784. doi: 10.1016/j.jallcom.2019.03.012 [25] WANG Y Y, HOU B H, LU H Y, et al. Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors[J]. Chemistryselect,2016,1(7):1441-1447. doi: 10.1002/slct.201600133 [26] 高曼. 松塔生物炭基超级电容器材料的制备与性能研究[D]. 北京: 中国地质大学(北京), 2021.GAO Man. Study on the preparation and performance of pinecone-based carbon supercapacitor materials[D]. Beijing: China University of Geosciences(Beijing), 2021(in Chinese). [27] 徐增华. 生物质水热炭基多孔炭的制备及其电化学性能研究[D]. 杭州: 浙江大学, 2021.XU Zenghua. Preparation and electrochemical of hydrochar-based porous carbons derived from biomass[D]. Hangzhou: Zhejiang University, 2021(in Chinese). [28] 芦宇婷. 生物质碳基MnO2复合材料制备及其电化学性能研究[D]. 大连: 大连海洋大学, 2022.LU Yuting. Preparation of biomass carbon-based MnO2 composites and study on their electrochemical properties[D]. Dalian: Dalian Ocean University, 2022(in Chinese). [29] 徐曼曼. 生物质基多孔材料与其在超级电容器中的应用研究[D]. 广州: 华南理工大学, 2017.XU Manman. Study on biomass-based porous materials and their application in supercapacitors[D]. Guangzhou: South China University of Technology, 2017(in Chinese). [30] WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710-23725. doi: 10.1039/c2jm34066f [31] ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology,2012,23(1):015401. doi: 10.1088/0957-4484/23/1/015401 [32] WU F M, GAO J P, ZHAI X G, et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors[J]. Carbon,2019,147:242-251. doi: 10.1016/j.carbon.2019.02.072 [33] WANG C S, LIU T Z. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor[J]. Journal of Alloys and Compounds,2017,696:42-50. doi: 10.1016/j.jallcom.2016.11.206 [34] 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3):34-39. doi: 10.16606/j.cnki.issn0253-4320.2014.03.016ZHANG Benbin, LIU Yunquan, YE Yueyuan. Progress in preparation of activated carbon and its activation mechanism[J]. Modern Chemical Industry,2014,34(3):34-39(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2014.03.016 [35] DING L L, ZOU B, LI Y N, et al. The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,423:104-111. doi: 10.1016/j.colsurfa.2013.02.003 [36] BARBIERI O, HAHN M, HERZOG A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon,2005,43(6):1303-1310. doi: 10.1016/j.carbon.2005.01.001 [37] WANG D W, LI F, LIU M, et al. Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon[J]. Journal of Physical Chemistry C,2008,112(26):9950-9955. doi: 10.1021/jp800173z [38] WANG Q, YAN J, FAN Z J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762. doi: 10.1039/c5ee03109e [39] YOON S B, CHAI G S, KANG S K, et al. Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates[J]. Journal of the American Chemical Society,2005,127(12):4188-4189. doi: 10.1021/ja0423466 [40] KRIVORUCHKO O P, MAKSIMOVA N I, ZAIKOVSKII V I, et al. Study of multiwalled graphite nanotubes and filaments formation from carbonized products of polyvinyl alcohol via catalytic graphitization at 600-800 degrees C in nitrogen atmosphere[J]. Carbon,2000,38(7):1075-1082. doi: 10.1016/S0008-6223(99)00225-0 [41] WAN C C, JIAO Y, LI J. Core-shell composite of wood-derived biochar supported MnO2 nanosheets for supercapacitor applications[J]. RSC Advances,2016,6(69):64811-64817. doi: 10.1039/C6RA12043A [42] 傅寒立. 虾壳源生物质炭及其MnO2复合材料的制备与超级电容特性[D]. 杭州: 浙江工业大学, 2020.FU Hanli. Preparation and supercapacitor propreties of shrimp shell-derived carbons and their MnO2 composites[D]. Hangzhou: Zhejiang University of Technology, 2020(in Chinese). [43] BROUSSE T, BÉLANGER D, LONG J W, et al. To be or not to be pseudocapacitive?[J]. Journal of the Electrochemical Society,2015,162:A5185. doi: 10.1149/2.0201505jes [44] JIN Y, CHEN H Y, CHEN M H, et al. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2013,5(8):3408-3416. doi: 10.1021/am400457x [45] LI X S, XU M M, YANG Y, et al. MnO2@corncob carbon composite electrode and all-solid-state supercapacitor with improved electrochemical performance[J]. Materials,2019,12(15):2379. doi: 10.3390/ma12152379 [46] CHENG Z Y, TAN G P, QIU Y F, et al. High performance electrochemical capacitors based on MnO2/activated-carbon-paper[J]. Journal of Materials Chemistry C,2015,3(24):6166-6171. doi: 10.1039/C5TC00645G [47] YUAN X M, ZHANG Y, YAN Y S, et al. Tunable synthesis of biomass-based hierarchical porous carbon scaffold@MnO2 nanohybrids for asymmetric supercapacitor[J]. Chemical Engineering Journal,2020,393:121214. doi: 10.1016/j.cej.2019.03.090 [48] ZHANG P, LI K X, LIU X H. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells[J]. Journal of Power Sources,2014,264:248-253. doi: 10.1016/j.jpowsour.2014.04.098 [49] FUERTES A B, LOTA G, CENTENO T A, et al. Templated mesoporous carbons for supercapacitor application[J]. Electrochimica Acta,2005,50(14):2799-2805. doi: 10.1016/j.electacta.2004.11.027 [50] SETARO A. Advanced carbon nanotubes functionalization[J]. Journal of Physics-condensed Matter,2017,29(42):423003. doi: 10.1088/1361-648X/aa8248 [51] YU J, LI M L, WANG X D, et al. Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@bamboo leaf carbon[J]. ACS Omega,2020,5(26):16299-16306. doi: 10.1021/acsomega.0c02169 [52] WANG X, CHU J, YAN H J, et al. Synthesis and characterization of MnO2/eggplant carbon composite for enhanced supercapacitors[J]. Heliyon, 2022, 8(9): e10631. -