留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁碳纳米管@石墨烯复合热塑性动态硫化橡胶材料制备及其热电性能

汤琦 胡仕腾 王雪萌 孙聚杰 宗成中

汤琦, 胡仕腾, 王雪萌, 等. 多壁碳纳米管@石墨烯复合热塑性动态硫化橡胶材料制备及其热电性能[J]. 复合材料学报, 2023, 40(7): 3928-3938. doi: 10.13801/j.cnki.fhclxb.20220919.002
引用本文: 汤琦, 胡仕腾, 王雪萌, 等. 多壁碳纳米管@石墨烯复合热塑性动态硫化橡胶材料制备及其热电性能[J]. 复合材料学报, 2023, 40(7): 3928-3938. doi: 10.13801/j.cnki.fhclxb.20220919.002
TANG Qi, HU Shiteng, WANG Xuemeng, et al. Preparation of multi-walled carbon nanotubes@graphene/thermoplastic vulcanizate composites and study on its thermoelectric properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3928-3938. doi: 10.13801/j.cnki.fhclxb.20220919.002
Citation: TANG Qi, HU Shiteng, WANG Xuemeng, et al. Preparation of multi-walled carbon nanotubes@graphene/thermoplastic vulcanizate composites and study on its thermoelectric properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3928-3938. doi: 10.13801/j.cnki.fhclxb.20220919.002

多壁碳纳米管@石墨烯复合热塑性动态硫化橡胶材料制备及其热电性能

doi: 10.13801/j.cnki.fhclxb.20220919.002
基金项目: 青岛市2021年博士后资助应用研究项目(040304031060092)
详细信息
    通讯作者:

    汤琦,博士,研究方向为热塑性动态硫化橡胶制备、结构与性能 E-mail: 1181476292@qq.com

  • 中图分类号: TQ334;TB332

Preparation of multi-walled carbon nanotubes@graphene/thermoplastic vulcanizate composites and study on its thermoelectric properties

Funds: Applied Research Project Supported by Qingdao Postdoctoral Research Center in 2021 (040304031060092)
  • 摘要: 利用一维和二维两种填料(多壁碳纳米管(MWCNTs)@石墨烯(GE))的协同作用来改善热塑性动态硫化橡胶(TPV)的热电性能(导电和导热性能)和力学性能。本文通过熔融接枝共混法制备MWCNTs@GE/聚丙烯-马来酸酐(PP-MA)母粒,在表征MWCNTs@GE/PP-MA母粒的结构、结晶性和微观形貌的基础上,进一步采用动态硫化方法制备具有独特网络结构的MWCNTs@GE/TPV复合材料,研究了MWCNTs@GE用量对MWCNTs@GE/TPV复合材料的相态结构、导电性能、导热性能及力学性能的影响。研究结果表明:与单组分填料制备的复合母粒相比,MWCNTs@GE并用体系具有协同作用,在PP-MA中分散均匀,与基体结合力强,在结晶过程中作为成核剂能够促进基体结晶,提高基体的结晶峰温度(Tc)和结晶度(Xc),减小结晶尺寸(LCrystallite)。MWCNTs@GE/TPV复合材料呈现出明显的“海岛”相结构,交联的丁基橡胶 (IIR)相以微米级颗粒状分散在PP-MA相中。MWCNTs和GE均匀分散在连续相PP-MA中,MWCNTs和GE间距离小于1 µm,形成MWCNTs@GE网络结构。当MWCNTs@GE/TPV复合材料中MWCNTs@GE含量达到3wt%时,交流电导率、导热率、断裂伸长率和拉伸强度达到最佳值。

     

  • 图  1  (a) 聚丙烯(PP)、PP熔融接枝马来酸酐(PP-MA)、多壁碳纳米管 (MWCNTs)/PP-MA母粒、石墨烯(GE)/PP-MA母粒和MWCNTs@GE/PP-MA母粒的FTIR图谱;(b) MWCNTs、GE、MWCNTs/PP-MA母粒、GE/PP-MA母粒和MWCNTs@GE/PP-MA母粒的Raman图谱

    Figure  1.  (a) FTIR spectra of polypropylene (PP), PP fusion grafting maleic anhydride (PP-MA), multi-walled carbon nanotubes (MWCNTs)/PP-MA masterbatch, graphene (GE)/PP-MA masterbatch and MWCNTs@GE/PP-MA masterbatch; (b) Raman spectra of MWCNTs, GE, MWCNTs/PP-MA masterbatch, GE/PP-MA masterbatch and MWCNTs@GE/PP-MA masterbatch

    图  2  PP、PP-MA、MWCNTs/PP-MA母粒、GE/PP-MA母粒和MWCNTs@GE/PP-MA母粒的XRD图谱

    Figure  2.  XRD patterns of PP, PP-MA, MWCNTs/PP-MA masterbatch, GE/PP-MA masterbatch and MWCNTs@GE/PP-MA masterbatch

    图  3  PP、PP-MA、MWCNTs/PP-MA母粒、GE/PP-MA母粒和MWCNTs@GE/PP-MA母粒的DSC图谱:(a) 结晶曲线;(b) 熔融曲线

    Figure  3.  DSC spectra of PP, PP-MA, MWCNTs/PP-MA masterbatch, GE/PP-MA masterbatch and MWCNTs@GE/PP-MA masterbatch: (a) Crystallization curves; (b) Melting curves

    图  4  MWCNTs (a)、GE (b)、PP-MA (c)、 MWCNTs/PP-MA母粒(d)、 GE/PP-MA母粒(e)和MWCNTs@GE/PP-MA母粒(f)的SEM图像

    Figure  4.  SEM images of MWCNTs (a), GE (b), PP-MA (c), MWCNTs/PP-MA masterbatch (d), GE/PP-MA masterbatch (e) and MWCNTs@GE/PP-MA masterbatch (f)

    图  5  不同MWCNTs@GE含量 MWCNTs@GE复合热塑性硫化橡胶(MWCNTs@GE/TPV)复合材料的TEM图像:(a) 1wt%;(b) 3wt%;(c) 5wt%

    Figure  5.  TEM images of MWCNTs@GE/thermoplastic vulcanizate (TPV) composites with different MWCNTs@GE contents: (a) 1wt%; (b) 3wt%; (c) 5wt%

    图  6  不同MWCNTs@GE含量MWCNTs@GE/TPV复合材料的热电性能:(a) 交流电导率随频率的变化;(b) 不同MWCNTs@GE含量MWCNTs@GE/TPV复合材料在102 Hz下的交流电导率;(c) 介电常数随频率的变化;(d) 导热系数

    Figure  6.  Thermoelectric properties of MWCNTs@GE/TPV composites with different MWCNTs@GE contents: (a) Alternating current (AC) conductivity vs frequency; (b) AC conductivity of MWCNTs@GE/TPV composites with different MWCNTs@GE contents at 102 Hz; (c) Dielectric permittivity vs frequency; (d) Thermal conductivity

    图  7  不同MWCNTs@GE含量MWCNTs@GE/TPV复合材料的力学性能:(a) 应力-应变曲线;(b) MWCNTs@GE含量对MWCNTs@GE/TPV复合材料拉伸强度、断裂伸长率和弹性模量的影响

    Figure  7.  Mechanical properties of MWCNTs@GE/TPV composites with different MWCNTs@GE contents: (a) Stress-strain curves; (b) Effect of MWCNTs@GE content on tensile strength, elongation at break and elastic modulus of MWCNTs@GE/TPV composites

    图  8  不同MWCNTs@GE含量MWCNTs@GE/TPV复合材料的拉伸断裂面形貌:(a) 0wt%;(b) 1wt%;(c) 3wt%;(d) 5wt%

    Figure  8.  Tensile fracture morphology of MWCNTs@GE/TPV composites with different MWCNTs@GE contents: (a) 0wt%; (b) 1wt%; (c) 3wt%; (d) 5wt%

    表  1  PP、PP-MA、MWCNTs/PP-MA母粒、GE/PP-MA母粒和MWCNTs@GE/PP-MA母粒的XRD数据

    Table  1.   XRD data of PP, PP-MA, MWCNTs/PP-MA masterbatch, GE/PP-MA masterbatch and MWCNTs@GE/PP-MA masterbatch

    SampleLCrystallite/nmI110/I040
    PP26.50.64
    PP-MA25.20.60
    MWCNTs/PP-MA24.30.52
    GE/PP-MA23.20.48
    MWCNTs@GE/PP-MA21.60.38
    Notes: LCrystallite—Crystal size of the PP crystal plane (040); I110/I040—Ratio of diffraction peak intensity of PP crystal plane (110) and crystal plane (040).
    下载: 导出CSV

    表  2  PP、PP-MA、MWCNTs/PP-MA母粒、GE/PP-MA母粒和MWCNTs@GE/PP-MA母粒的结晶数据

    Table  2.   Crystallization data of PP, PP-MA, MWCNTs/PP-MA masterbatch, GE/PP-MA masterbatch and MWCNTs@GE/PP-MA masterbatch

    SampleTc/℃Tm/℃Hm/(J·g−1)Xc/%
    PP100.2142.793.644.8
    PP-MA102.8141.299.548.3
    MWCNTs/PP-MA107.6141.2103.250.9
    GE/PP-MA106.2141.1107.653.1
    MWCNTs@GE/PP-MA109.3140.8115.356.9
    Notes: Tc and Tm—Crystallization peak temperature and melting temperature; ΔHm—Enthalpy of PP; Xc—Crystallinity of PP.
    下载: 导出CSV
  • [1] LI X, KANG H L, LUO Q L, et al. Preparation and properties of a novel poly(lactic-acid)-based thermoplastic vulcanizate from both experiments and simulations[J]. RSC Advances,2022,12(16):9534-9542. doi: 10.1039/D2RA00286H
    [2] HUANG Y Y, LIU Z, XU H Y, et al. Conductive thermoplastic vulcanizates based on carbon black-filled bromo-isobutylene-isoprene rubber (BIIR)/polypropylene (PP)[J]. Reviews on Advanced Materials Science,2021,60(1):303-312. doi: 10.1515/rams-2021-0013
    [3] LI M C, WANG Y, SHEN C H, et al. PP/POE thermoplastic elastomer prepared by dynamic vulcanization and its flame retardant modification[J]. Journal of Elastomers & Plastics,2022,54(2):209-224.
    [4] 汤琦, 颜桐桐, 孙豪, 等. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6):6206-6211. doi: 10.11896/cldb.19110144

    TANG Qi, YAN Tongtong, SUN Hao, et al. Phase structure and thermo-electric effect of multi-walled carbon nanotubes/thermoplastic vulcanizate composites prepared by dynamic vulcanization[J]. Materials Reports,2021,35(6):6206-6211(in Chinese). doi: 10.11896/cldb.19110144
    [5] MA L F, BAO R Y, DOU R, et al. Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: From strain sensor to highly stretchable conductor[J]. Composites Science and Technology,2016,128:176-184. doi: 10.1016/j.compscitech.2016.04.001
    [6] YU J, CHOI H K, KIM H S, et al. Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect.[J]. Composites Part A: Applied Science and Manufacturing,2016,88:79-85. doi: 10.1016/j.compositesa.2016.05.022
    [7] 高浩, 时文欣, 宋维浩, 等. 氧化石墨烯/多壁碳纳米管影响天然橡胶性能的实验研究[J]. 复合材料学报, 2022, 39(5):2172-2182. doi: 10.13801/j.cnki.fhclxb.20210615.001

    GAO Hao, SHI Wenxin, SONG Weihao, et al. Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research[J]. Acta Materiae Compositae Sinica,2022,39(5):2172-2182(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210615.001
    [8] KHODABANDELOU M, AGHJEH M K. Impact behavior of CNT-filled PP/EPDM blends: Effect of dynamic vulcanization and PP-g-MA compatibilizer[J]. Polymer Bulletin,2016,73(6):1607-1626. doi: 10.1007/s00289-015-1566-2
    [9] YAN N, XIA H, WU J, et al. Compatibilization of natural rubber/high density polyethylene thermoplastic vulcanizate with graphene oxide through ultrasonically assisted latex mixing[J]. Journal of Applied Polymer Science,2012,15:933-941.
    [10] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [11] MISHRA J K, RYOU J H, KIM G H, et al. Preparation and properties of a new thermoplastic vulcanizate (TPV)/organoclay nanocomposite using maleic anhydride functionalized polypropylene as a compatibilizer[J]. Materials Letters,2004,58(27):3481-3485.
    [12] HSIAO M C, LIAO S H, LIN Y F, et al. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite[J]. Nanoscale,2011,3:1516-1522. doi: 10.1039/c0nr00981d
    [13] YUAN B, BAO C, SONG L, et al. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties[J]. Chemical Engineering Journal,2014,237:411-420. doi: 10.1016/j.cej.2013.10.030
    [14] WANG D R, ZHANG X M, ZHA J W, et al. Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold[J]. Polymer,2013,54(7):1916-1922. doi: 10.1016/j.polymer.2013.02.012
    [15] LI C Q, ZHA J W, LONG H Q, et al. Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer[J]. Composites Science and Technology,2017,153:111-118. doi: 10.1016/j.compscitech.2017.10.015
    [16] SONG P G, CAO Z H, CAI Y Z, et al. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties[J]. Polymer,2011,52(18):4001-4010. doi: 10.1016/j.polymer.2011.06.045
    [17] MOHIUDDIN T M G, LOMBARDO A, NAIR R R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grueneisen parameters, and sample orientation[J]. Physical Review,2009,79(20):205433. doi: 10.1103/PhysRevB.79.205433
    [18] JONES A T, AIZLEWOOD J M, BECKETT D R. Crystalline forms of isotactic polypropylene[J]. Macromolecular Chemistry & Physics,1964,75(1):134-158.
    [19] LIANG J J, HUANG Y, ZHANG L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Advanced Functional Materials,2009,19(14):2297-2302. doi: 10.1002/adfm.200801776
    [20] LEE G W, JAGANNATHAN S, CHAE H G, et al. Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites[J]. Polymer,2008,49(7):1831-1840. doi: 10.1016/j.polymer.2008.02.029
    [21] FRANTIŠEK K, JOSEF P, PETR P, et al. Controlled reactive modification of polypropylene with maleic anhydride via solvent-free technique[J]. Polymer Degradation & Stability,2019,168:1-8.
    [22] SHI Y Y, YANG J H, HUANG T, et al. Selective localization of carbon nanotubes at the interface of poly(L-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity[J]. Composites Part B: Engineering,2013,55:463-469. doi: 10.1016/j.compositesb.2013.07.012
    [23] LIU S T, TIAN M, ZHANG L Q, et al. Tailoring dielectric properties of polymer composites by controlling alignment of carbon nanotubes[J]. Journal of Materials Science,2016,51(5):2616-2626. doi: 10.1007/s10853-015-9575-y
    [24] TIAN M, YAN B Y, YAO Y, et al. Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity[J]. Journal of Materials Chemistry C,2014,2(39):8388-8397. doi: 10.1039/C4TC01140F
    [25] HUY T A, LUEPKE T, RADUSCH H J. Characterization of the deformation behavior of dynamic vulcanizates by FTIR spectroscopy[J]. Journal of Applied Polymer Science,2001,80(2):148-158. doi: 10.1002/1097-4628(20010411)80:2<148::AID-APP1083>3.0.CO;2-W
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  305
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2022-09-07
  • 录用日期:  2022-09-10
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回