留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

养护温度对长江下游疏浚超细砂浆特性影响机制

陈徐东 吴朝国 陈璋 宁英杰 白丽辉

陈徐东, 吴朝国, 陈璋, 等. 养护温度对长江下游疏浚超细砂浆特性影响机制[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 陈徐东, 吴朝国, 陈璋, 等. 养护温度对长江下游疏浚超细砂浆特性影响机制[J]. 复合材料学报, 2022, 40(0): 1-13
xudong CHEN, chaoguo WU, zhang CHEN, yingjie NING, lihui BAI. Influence mechanism of curing temperature on the characteristics of dredged ultrafine mortar from Yangtze River[J]. Acta Materiae Compositae Sinica.
Citation: xudong CHEN, chaoguo WU, zhang CHEN, yingjie NING, lihui BAI. Influence mechanism of curing temperature on the characteristics of dredged ultrafine mortar from Yangtze River[J]. Acta Materiae Compositae Sinica.

养护温度对长江下游疏浚超细砂浆特性影响机制

基金项目: 国家重点研发计划(2021 YFB2600200);国家自然科学基金面上项目(51979090);国家重点实验室开放基金(2019 CEM002)
详细信息
    通讯作者:

    陈徐东,博士,教授,博士生导师,研究方向为混凝土材料 E-mail:cxdong1985@163.com

  • 中图分类号: TU37

Influence mechanism of curing temperature on the characteristics of dredged ultrafine mortar from Yangtze River

Funds: National Key R&D Program of China (2021 YFB2600200); National Natural Science Foundation of China (51979090); State Key Laboratory of High-Performance Civil Engineering Materials (2019 CEM002)
  • 摘要: 为了实现长江下游疏浚砂的综合利用,拓展细骨料来源,研究不同养护温度对不同疏浚砂掺量砂浆特性的影响。以疏浚砂为原料,设计了3种不同疏浚砂掺量的砂浆配合比,研究了40℃、60℃、80℃、90℃四种养护温度对不同龄期抗压、抗折强度的影响,并结合X射线衍射、热重-差示扫描量热、扫描电镜、压汞测试,分析了不同养护温度及不同疏浚砂掺量砂浆的微观结构,研究结果表明:随着养护温度升高,砂浆内部水化产物分布不均匀,阻碍了后续的水化反应,砂浆的抗压、抗折强度总体上先增大后减小,养护温度越高,蒸养损伤越大;疏浚砂颗粒粒径极小,具有良好的填充效果,适量掺入疏浚砂能提高体系的密实度,同时还能减少有害孔和多害孔的数量,进而提高砂浆的力学性能;蒸养条件下,砂浆孔结构缺陷增多,疏浚砂的优化作用被放大,一定程度上可以抵消蒸养带来的部分不利影响,随养护温度的升高,疏浚砂对抗压强度的提升率逐渐降低,最大能提升31.35%,对抗折强度的提升率先增大后减小,最大能提升14.29%。

     

  • 图  1  不同养护温度下疏浚砂砂浆的抗压强度

    Figure  1.  Compressive strength of dredged sand mortar at different curing temperatures

    图  2  不同疏浚砂掺量砂浆的90 d抗压强度

    Figure  2.  90 d compressive strength of mortar with different dredged sand admixtures

    图  3  不同疏浚砂掺量砂浆的90 d抗压强度提升率

    Figure  3.  90 d compressive strength improvement rate of mortar with different dredged sand admixtures

    图  4  不同养护温度下疏浚砂砂浆的抗折强度

    Figure  4.  Flexural strength of dredged sand mortar at different curing temperatures

    图  5  不同疏浚砂掺量砂浆的90 d抗折强度

    Figure  5.  90 d flexural strength of mortar with different dredged sand admixtures

    图  6  疏浚砂砂浆孔隙填充示意图

    Figure  6.  Schematic diagram of pore filling in dredged sand mortar

    图  7  疏浚砂砂浆气泡滞留示意图

    Figure  7.  Schematic diagram of air bubble retention in dredged sand mortar

    图  8  疏浚砂砂浆水化产物XRD图谱

    Figure  8.  XRD pattern of dredged sand mortar hydration product

    图  9  疏浚砂砂浆TG-DSC曲线(t=0%)

    Figure  9.  TG-DSC curve of dredged sand mortar (t=0%)

    图  10  疏浚砂砂浆TG-DSC曲线(t=50%)

    Figure  10.  TG-DSC curve of dredged sand mortar (t=50%)

    图  11  疏浚砂砂浆SEM图像

    Figure  11.  SEM image of dredged sand mortar

    图  12  疏浚砂砂浆孔隙率

    Figure  12.  Porosity of dredged sand mortar

    图  13  疏浚砂砂浆累计孔体积

    Figure  13.  Cumulative pore volume of dredged sand mortar

    表  1  粉煤灰化学成分

    Table  1.   Chemical composition of fly ash

    IngredientsCaOSiO2Al2O3MgOTiO2P2O5MnOK2OFe2O3
    Mass fraction/wt%1.4755.7834.690.251.741.170.021.323.56
    下载: 导出CSV

    表  2  矿粉化学成分

    Table  2.   Chemical composition of mineral powder

    IngredientsCaOSiO2Al2O3MgOTiO2SO3MnOK2OFe2O3
    Mass fraction/wt%39.1926.3116.179.992.183.711.040.381.03
    下载: 导出CSV

    表  3  疏浚砂与机制砂物理性能参数

    Table  3.   Physical property parameters of dredged sand and mechanism sand

    SandApparent density /(kg·m−3)Stacking density /(kg·m−3)Porosity/%Mud content/%Water content/%Fineness modulus
    Dredged sand2690136512.31.9%13.50.5
    Mechanized sand25911484433.2
    下载: 导出CSV

    表  4  砂浆配合比 (kg·m−3)

    Table  4.   Mortar mix ratio (kg·m−3)

    Dredged sand admixture t/%CementFly ashMineral powderDredged sandMechanized sandWaterAdditives
    0322264.715001035279.33.3
    15322264.7150155.25879.75279.33.3
    50322264.7150517.5517.5279.33.3
    下载: 导出CSV

    表  5  试件编号

    Table  5.   Specimen number

    Specimen
    number
    t/%Curing temperature/℃
    0%DS-S0S
    15%DS-401540
    50%DS-605060
    0%DS-80080
    15%DS-901590
    Notes: Taking 15%DS-40 as an example, 15%DS represents the dredged sand admixture is 15%, 40 represents the curing method is 40°C steam curing. The curing temperature S represents the standard curing.
    下载: 导出CSV

    表  6  疏浚砂砂浆质量损失率及Ca(OH)2含量

    Table  6.   Mass loss rate and Ca(OH)2 content of dredged sand mortar

    Specimen numberMass loss rate/%Ca(OH)2 content/wt%
    0%DS-6015.205.85
    0%DS-9012.933.78
    50%DS-6015.534.56
    50%DS-9014.083.69
    下载: 导出CSV

    表  7  疏浚砂砂浆平均孔径与孔径分布

    Table  7.   Average pore size and pore size distribution of dredged sand mortar

    Specimen numberAverage pore size/nmPore size distribution/%
    <20 nm20~50 nm50~200 nm>200 nm
    0%DS-4011.1936.9713.7613.0836.19
    0%DS-6011.8654.3915.465.0925.06
    0%DS-8016.3653.278.341.6336.76
    0%DS-9016.9851.018.072.5138.41
    0%DS-S13.7150.9717.407.9723.66
    50%DS-4010.662.956.714.8725.47
    50%DS-6010.7771.359.063.6715.92
    50%DS-8011.6657.2011.536.8924.38
    50%DS-9011.9560.689.794.7324.80
    50%DS-S10.9366.2812.080.8420.80
    下载: 导出CSV
  • [1] 李青云. 推进长江航道疏浚砂综合利用[N]. 中国水运报, 2020-04-01(001).

    LI Qingyun. Promote the comprehensive utilization of dredged sand in the Yangtze River waterway [N]. China Water Transport News, 2020-04-01(001)(in Chinese).
    [2] ZHANG G, SONG J, YANG J, et al. Performance of mortar and concrete made with a fine aggregate of desert sand[J]. Building and Environment,2006,41(11):1478-1481. doi: 10.1016/j.buildenv.2005.05.033
    [3] QIAO H, NDAHIRWA D, Li Y, et al. The Feasibility of Basalt Rock Powder and Superfine Sand as Partial Replacement Materials for Portland Cement and Artificial Sand in Cement Mortar[J]. Research and Application of Materials Science,2019,1(1):1-6.
    [4] HASSOUNE M, CHRAIBI G, FATMAOUI H, et al. Stability of quay wall made on concrete blocks with a formulation based on dredging sand[J]. Materials Today:Proceedings,2021,36:47-53. doi: 10.1016/j.matpr.2020.05.163
    [5] HASSOUNE M, FATMAOUI H, CHAOUFI J. Use of concrete formulations based on dredging sand in the fabrication of tetrapods for protection of harbour dykes[J]. Materials Today:Proceedings,2022,52:60-63. doi: 10.1016/j.matpr.2021.10.281
    [6] 李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1):335-343.

    LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze River[J]. Acta Materiae Compositae Sinica,2022,39(1):335-343(in Chinese).
    [7] ZHANG Q, LIU H, LIU Q, et al. Study the fire resistance of desert sand concrete (DSC) with interface phase through uniaxial compression tests and analyses[J]. Advances in Civil Engineering,2021:2021.
    [8] LIU H, MA Y, MA J, et al. Frost resistance of desert sand concrete[J]. Advances in Civil Engineering,2021:2021.
    [9] PENG X, ZHOU Y, JIA R, et al. Preparation of non-sintered lightweight aggregates from dredged sediments and modification of their properties[J]. Construction and Building Materials,2017,132:9-20. doi: 10.1016/j.conbuildmat.2016.11.088
    [10] 刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10):2428-2438.

    LIU Xia, LI Feng, SHE Yinpeng. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica,2020,37(10):2428-2438(in Chinese).
    [11] 秦拥军, 张亮亮, 渠长伟, 等. 钢纤维沙漠砂混凝土梁受弯力学性能试验[J]. 复合材料学报, 2021, 39(0):1-12.

    QIN Yongjun, ZHANG Liangliang, DUI Changwei, et al. Testing of flexural mechanical properties of steel fiber desert sand concrete beams[J]. Acta Materiae Compositae Sinica,2021,39(0):1-12(in Chinese).
    [12] 梅军帅, 吴静, 王罗新, 等. 珊瑚砂浆的力学性能与微观结构特征[J]. 建筑材料学报, 2020, 23(2):263-270.

    MEI Junshuai, WU Jing, WANG Luoxin, et al. Mechanical properties and microstructural characteristics of coral mortar[J]. Journal of Building Materials,2020,23(2):263-270(in Chinese).
    [13] HUANG X, LI G, PAN X, et al. Kinetic characteristics of lightweight aggregates obtained from dredged sediment[J]. Journal of Thermal Analysis and Calorimetry,2016,126(3):1201-1209. doi: 10.1007/s10973-016-5610-8
    [14] ZEYAD A M, JOHARI M A M, ALHARBI Y R, et al. Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete[J]. Journal of Building Engineering,2021,38:102204. doi: 10.1016/j.jobe.2021.102204
    [15] MO Z, GAO X, SU A. Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions[J]. Construction and Building Materials,2021,268:121112. doi: 10.1016/j.conbuildmat.2020.121112
    [16] YANG J, HU H, HE X, et al. Effect of steam curing on compressive strength and microstructure of high volume ultrafine fly ash cement mortar[J]. Construction and Building Materials,2021,266:120894. doi: 10.1016/j.conbuildmat.2020.120894
    [17] 黄安, 李北星, 杨建波, 等. 蒸养制度对预制桥面板混凝土强度与抗渗性的影响[J]. 硅酸盐通报, 2021, 40(4):1170-1177.

    HUANG An, LI Beixing, YANG Jianbo, et al. Effect of steam curing system on strength and impermeability of precast bridge deck concrete[J]. Bulletin of Silicate,2021,40(4):1170-1177(in Chinese).
    [18] QIAN X, JIANG L, SONG Z, et al. Impact of elevated curing temperature on mechanical properties and microstructure of MgO-based expansive additive cement mortars[J]. Structural Concrete,2020,21(3):1082-1092. doi: 10.1002/suco.201900127
    [19] De Larrard F. Concrete mixture proportioning: a scientific approach[M]. CRC Press, 1999.
    [20] 李玉根, 张慧梅, 刘光秀, 等. 风积砂混凝土基本力学性能及影响机理[J]. 建筑材料学报, 2020, 23(5):1212-1221. doi: 10.3969/j.issn.1007-9629.2020.05.030

    LI Yugen, ZHANG Huimei, LIU Guangxiu, et al. Basic mechanical properties and influence mechanism of aeolian sand concrete[J]. Journal of Building Materials,2020,23(5):1212-1221(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.05.030
    [21] 桑国臣, 曹艳洲, 樊敏, 等. 硫铝酸盐水泥基复合相变储能砂浆的制备及其性能[J]. 复合材料学报, 2018, 35(8):2124-2131.

    SANG Guochen, CAO Yanzhou, FAN Min, et al. Preparation and properties of sulfoaluminate cement-based composite phase change energy storage mortar[J]. Acta Materiae Compositae Sinica,2018,35(8):2124-2131(in Chinese).
    [22] YANG S, WANG J, CUI S, et al. Impact of four kinds of alkanolamines on hydration of steel slag-blended cementitious materials[J]. Construction and Building Materials,2017,131:655-666. doi: 10.1016/j.conbuildmat.2016.09.060
    [23] 朱红光, 霍青杰, 倪亚东, 等. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22):22085-22091. doi: 10.11896/cldb.20080019

    ZHU Hongguang, HUO Qingjie, NI Yadong, et al. Research on compressive strength and frost resistance of coal gangue fine aggregate-slag concrete[J]. Materials Reports,2021,35(22):22085-22091(in Chinese). doi: 10.11896/cldb.20080019
    [24] 张高展, 葛竞成, 张春晓, 等. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15):15125-15133. doi: 10.11896/cldb.20060297

    ZHANG Gaozhan, GE Jingcheng, ZHANG Chunxiao, et al. Advances in the effect of curing system on the formation mechanism of concrete microstructure[J]. Materials Reports,2021,35(15):15125-15133(in Chinese). doi: 10.11896/cldb.20060297
    [25] 黄时玉, 霍彬彬, 陈春, 等. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5):73-78.

    HUANG Shiyu, HUO Binbin, CHEN Chun, et al. The Influence of metakaolin on the Hydration of Steam-cured Steel Slag Blended Cement[J]. Materials Reports,2022,36(5):73-78(in Chinese).
    [26] BAHAFID S, GHABEZLOO S, DUC M, et al. Effect of the hydration temperature on the microstructure of Class G cement: CSH composition and density[J]. Cement and Concrete Research,2017,95:270-281. doi: 10.1016/j.cemconres.2017.02.008
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-05-30
  • 修回日期:  2022-05-10
  • 网络出版日期:  2022-06-16

目录

    /

    返回文章
    返回