留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界CO2流体辅助合成Si-Fe-Fe3O4-C复合材料及储锂性能

卢铚航 马俊凯 杨刚锋 夏阳 甘永平 张俊 张文魁 黄辉

卢铚航, 马俊凯, 杨刚锋, 等. 超临界CO2流体辅助合成Si-Fe-Fe3O4-C复合材料及储锂性能[J]. 复合材料学报, 2022, 39(0): 1-9
引用本文: 卢铚航, 马俊凯, 杨刚锋, 等. 超临界CO2流体辅助合成Si-Fe-Fe3O4-C复合材料及储锂性能[J]. 复合材料学报, 2022, 39(0): 1-9
Zhihang LU, Junkai MA, Gangfeng YANG, Yang XIA, Yongping GAN, Jun ZHANG, Wenkui ZHUANG, Hui HUANG. Supercritical CO2 fluid assisted synthesis of Si-Fe-Fe3O4-C composites and lithium storage performance[J]. Acta Materiae Compositae Sinica.
Citation: Zhihang LU, Junkai MA, Gangfeng YANG, Yang XIA, Yongping GAN, Jun ZHANG, Wenkui ZHUANG, Hui HUANG. Supercritical CO2 fluid assisted synthesis of Si-Fe-Fe3O4-C composites and lithium storage performance[J]. Acta Materiae Compositae Sinica.

超临界CO2流体辅助合成Si-Fe-Fe3O4-C复合材料及储锂性能

基金项目: 国家自然科学基金项目-联合重点(U20A20253)
详细信息
    通讯作者:

    黄辉,博士,教授,硕士生/博士生导师,研究方向为新能源材料和CO2转化技术 E-mail: hhui@zjut.edu.cn

  • 中图分类号: TB332

Supercritical CO2 fluid assisted synthesis of Si-Fe-Fe3O4-C composites and lithium storage performance

  • 摘要: 硅碳负极是未来锂离子电池材料发展的重点方向之一,本文针对传统球磨法制备硅碳负极复合不均匀、界面融合差等问题,提出了一种超临界二氧化碳(scCO2)流体介质球磨合成Si-Fe-Fe3O4-C复合材料的新方法。研究发现,纳米硅和中间相碳微球(MCMB)在scCO2介质球磨混合过程中,CO2和Fe反应先得到均匀分散的Si-FeCO3-C前驱体,然后FeCO3原位高温固相分解得到Si-Fe-Fe3O4-C复合材料。同时,在scCO2流体渗透下,MCMB剥离成石墨片,并与纳米硅和Fe-Fe3O4实现较好的界面融合,Fe-Fe3O4的引入显著提升了硅碳负极的储锂容量、循环稳定性和倍率性能,Si-Fe-Fe3O4-C复合材料在0.2 A · g−1下100次循环后可逆容量保持在1065 mA · h · g−1。本方法利用超临界流体渗透性好、扩散能力强等特点,合成工艺简便,容易工业化实施,具有商业化开发潜力。

     

  • 图  1  超临界流体球磨处理对中间相碳微球(MCMB)表观形貌的影响(a, c) 处理前; (b, d) 处理后

    Figure  1.  Effect of supercritical fluid milling treatment on surface morphology of mesophase carbon microspheres (MCMB) (a, c) SEM of MCMB before treatment ; (b, d) SEM of MCMB after treatment

    图  2  MCMB和scMCMB的拉曼光谱图

    Figure  2.  Raman spectra of MCMB and scMCMB samples

    图  3  超临界CO2流体介质球磨、热处理以及酸洗收集的样品XRD谱图:(a)球磨产物Si-Fe-Fe3O4-C前驱体;(b)热处理产物Si-Fe-Fe3O4-C;(c)酸洗产物Si-C;(d)Si-Fe-Fe3O4-C复合材料热重分析

    Figure  3.  XRD patterns of samples obtained from (a) milling in supercritical CO2 fluid, (b) subsequent heating treat and (c) acid cleaning treatment; (d) TG curves of Si-Fe-Fe3O4-C composite materials

    图  4  (a, b) 纳米硅SEM图像;(c, d) scMCMB, (e, f) Si-C, (g, h) Si-Fe-Fe3O4-C的SEM图像与对应的EDS元素分布图

    Figure  4.  SEM images of nano Si (a, b); SEM image and EDS mapping of scMCMB (c, d), Si-C (e, f) and Si-Fe-Fe3O4-C(g, h)

    图  5  Si-Fe-Fe3O4-C复合材料制备成极片的SEM图像(a) 循环前;(b) 循环后

    Figure  5.  SEM images of Si-Fe-Fe3O4-C electrodes (a) before the cycle; (b) after 300 cycle

    图  6  (a) Si-Fe-Fe3O4-C在0.1 mV·s−1的扫速下的CV曲线;(b) Si-Fe-Fe3O4-C(Si∶C=1∶4)的前三次充放电曲线

    Figure  6.  (a) CV curves of Si-Fe-Fe3O4-C at 0.1 mV·s−1; (b) Galvanostatic charge-discharge curves of Si-Fe-Fe3O4-C at the 1st, 2nd, 3rd cycle

    图  7  纳米硅、scMCMB、Si-C和Si-Fe-Fe3O4-C的电化学性能(a) 在0.2 A·g−1下循环性能;(b) 在1A·g-1下循环性能;(c) 倍率性能;

    Figure  7.  Electrochemical performance of nano Si, scMCMB, Si-C and Si-Fe-Fe3O4-C (a) Cycle performance at 0.2 A·g−1, (b) Cycle performance at 1 A·g-1 (c) Rate performance

    图  8  Si-Fe-Fe3O4-C-(超临界)、Si-Fe-Fe3O4-C-M在1A·g−1下循环性能

    Figure  8.  Cycle performance of Si-Fe-Fe3O4-C-(SC-CO2)、Si-Fe-Fe3O4-C-M at 1 A·g−1

    图  9  纳米硅、scMCMB、Si-C和Si-Fe-Fe3O4-C的EIS谱

    Figure  9.  Nyquist plots of nano Si, scMCMB, Si-C and Si-Fe-Fe3O4-C

    表  1  Si-Fe-Fe3O4-C复合材料制备过程中的质量变化及计算结果

    Table  1.   Mass changes and calculation results during the preparation of Si-Fe-Fe3O4-C composite

    SampleNano SiMCMBSi-FeCO3-CSi-Fe-Fe3O4-CFeFe4O3Mass Loss
    Si-Fe-Fe3O4-C (Si∶C=1∶1)0.250 g0.250 g0.995 g0.966 g0.285 g0.119 g21.7%
    Si-Fe-Fe3O4-C (Si∶C=1∶4)0.250 g1.000 g1.730 g1.660 g0.320 g0.091 g53.7%
    下载: 导出CSV

    表  2  Si-Fe-Fe3O4-C复合材料各物相组成

    Table  2.   Phase composition of Si-Fe-Fe3O4-C composite

    wt.%SiCFeFe3O4
    Si-Fe-Fe3O4-C
    (Si∶C=1∶1)
    29.06 %29.06 %29.51 %12.36 %
    Si-Fe-Fe3O4-C
    (Si∶C=1∶4)
    15.05 %60.21 %19.25 %5.49 %
    下载: 导出CSV
  • [1] OLABI A G, ONUMAEGBU C, WILBERFORCE T, et al. Critical review of energy storage systems[J]. Energy,2021,214:118987. doi: 10.1016/j.energy.2020.118987
    [2] GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Advanced Materials,2021,33(16):2004577. doi: 10.1002/adma.202004577
    [3] GUO J P, DONG D Q, WANG J, et al. Silicon-based lithium ion battery systems: state-of-the-art from half and full cell viewpoint[J]. Advanced Functional Materials,2021,31(34):2102546. doi: 10.1002/adfm.202102546
    [4] JIN Y, LI S, KUSHIMA A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science,2017,10(2):580-592.
    [5] SHI Q T, ZHOU J H, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials,2021,34:735-754. doi: 10.1016/j.ensm.2020.10.026
    [6] ZAIDI S D A, WANG C, GYORGY B, et al. Iron and silicon oxide doped/PAN-based carbon nanofibers as free-standing anode material for Li-ion batteries[J]. Journal of Colloid and Interface Science,2020,569:164-176. doi: 10.1016/j.jcis.2020.02.059
    [7] SUN L Y, YANG L, LI J, et al. Superior full-cell cycling and rate performance achieved by carbon coated hollow Fe3O4 nanoellipsoids for lithium ion battery[J]. Electrochimica Acta,2018,288:71-81. doi: 10.1016/j.electacta.2018.08.060
    [8] YAN Y J, CHEN Y X, LI Y Y, et al. Synthesis of Si/Fe2O3-Anchored rGO frameworks as high-performance anodes for Li-ion batteries[J]. International Journal of Molecular Sciences,2021,22(20):11041. doi: 10.3390/ijms222011041
    [9] WANG H, DING Y, NONG J, et al. Bifunctional NaCl template for the synthesis of Si@graphitic carbon nanosheets as advanced anode materials for lithium ion batteries[J]. New Journal of Chemistry,2020,44(33):14278-14285. doi: 10.1039/D0NJ02547J
    [10] YANG Z X, DU Y, YANG Y J, et al. Large-scale production of highly stable silicon monoxide nanowires by radio-frequency thermal plasma as anodes for high-performance Li-ion batteries[J]. Journal of Power Sources,2021,497:229906. doi: 10.1016/j.jpowsour.2021.229906
    [11] AN W, XIANG B, FU J, et al. Three-dimensional carbon-coating silicon nanoparticles welded on carbon nanotubes composites for high-stability lithium-ion battery anodes[J]. Applied Surface Science,2019,479:896-902. doi: 10.1016/j.apsusc.2019.02.145
    [12] LIAO C, WU S. Pseudocapacitance behavior on Fe3O4-pillared SiOx microsphere wrapped by graphene as high performance anodes for lithium-ion batteries[J]. Chemical Engineering Journal,2019,355:805-814. doi: 10.1016/j.cej.2018.08.141
    [13] GRINBOM G, MUALLEM M, ITZHAK A, et al. Synthesis of carbon nanotubes networks grown on silicon nanoparticles as Li-ion anodes[J]. Journal of Physical Chemistry C,2017,121(46):25632-25640. doi: 10.1021/acs.jpcc.7b05709
    [14] ZHOU M J, GORDIN M L, CHEN S R, et al. Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries[J]. Electrochemistry Communications,2013,28:79-82. doi: 10.1016/j.elecom.2012.12.013
    [15] SU L, ZHONG Y, ZHOU Z. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core-shell Fe3O4@C and Fe@C microspheres[J]. Journal of Materials Chemistry A,2013,1(47):15158-15166. doi: 10.1039/c3ta13233a
    [16] WANG Q, GUO C, HE J, et al. Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds,2019,795:284-290. doi: 10.1016/j.jallcom.2019.05.038
    [17] LIU C, XIA Q, LIAO C, et al. Pseudocapacitance contribution to three-dimensional micro-sized silicon@Fe3O4@few-layered graphene for high-rate and long-life lithium ion batteries[J]. Materials Today Communications,2019,18:66-73. doi: 10.1016/j.mtcomm.2018.11.004
    [18] HERNANDHA R F H, RATH P C, UMESH B, et al. Supercritical CO2-assisted SiOx/carbon multi-layer coating on Si anode for lithium-ion batteries[J]. Advanced Functional Materials,2021,31(40):2104135. doi: 10.1002/adfm.202104135
    [19] PAUL N, WANDT J, SEIDLMAYER S, et al. Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction[J]. Journal of Power Sources,2017,345:85-96. doi: 10.1016/j.jpowsour.2017.01.134
    [20] FAN P, MU T, LOU S, et al. Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries[J]. Electrochimica Acta,2019,306:590-598. doi: 10.1016/j.electacta.2019.03.154
    [21] XU Q, LI J-Y, SUN J-K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials,2017,7(3):1601481. doi: 10.1002/aenm.201601481
    [22] ZHAO X, XIA D, ZHENG K. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries[J]. Acs Applied Materials & Interfaces,2012,4(3):1350-1356.
    [23] FURQUAN M, KHATRIBAIL A R, VIJAYALAKSHMI S, et al. Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery[J]. Journal of Power Sources,2018,382:56-68. doi: 10.1016/j.jpowsour.2018.02.011
    [24] LIN Y, CHEN Y, ZHAN Y, et al. Wet-chemical synthesized MCMB@Si@C microspheres for high-performance lithium-ion battery anodes[J]. Chemical Communications,2018,54(68):9466-9469. doi: 10.1039/C8CC04797A
    [25] XIE J, TONG L, SU L, et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources,2017,342:529-536. doi: 10.1016/j.jpowsour.2016.12.094
    [26] JIANG B, LIANG Y, YU X, et al. Facile synthesis of FeCO3/nitrogen-doped carbon dot composites for lithium-ion battery anodes[J]. Journal of Alloys and Compounds,2020,838:155508. doi: 10.1016/j.jallcom.2020.155508
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 录用日期:  2022-01-15
  • 修回日期:  2022-01-03
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回