留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁化合物功能化复合纤维的制备及其缓释CO性能

张祖儿 林巧巧 肖志音 翟云云 姜秀娟 刘小明

张祖儿, 林巧巧, 肖志音, 等. 铁化合物功能化复合纤维的制备及其缓释CO性能[J]. 复合材料学报, 2021, 39(0): 1-10
引用本文: 张祖儿, 林巧巧, 肖志音, 等. 铁化合物功能化复合纤维的制备及其缓释CO性能[J]. 复合材料学报, 2021, 39(0): 1-10
Zuer ZHANG, Qiaoqiao LIN, Zhiyin XIAO, Yunyun ZHAI, Xiujuan JIANG, Xiaoming LIU. Preparation of electrospun composite fibers functionalized with an iron complex and their CO-release behavior[J]. Acta Materiae Compositae Sinica.
Citation: Zuer ZHANG, Qiaoqiao LIN, Zhiyin XIAO, Yunyun ZHAI, Xiujuan JIANG, Xiaoming LIU. Preparation of electrospun composite fibers functionalized with an iron complex and their CO-release behavior[J]. Acta Materiae Compositae Sinica.

铁化合物功能化复合纤维的制备及其缓释CO性能

基金项目: 国家自然科学基金(21807047);浙江省自然科学基金(LY19B010001);国家级“大学生创新创业训练计划”项目(202110354035)。
详细信息
    通讯作者:

    肖志音,博士,副教授,硕士生导师,研究方向为铁羰基化合物的催化性能和药用价值评估 E-mail: zhiyin.xiao@zjxu.edu.cn

    刘小明,博士,教授,博士生导师,研究方向为功能配合物的催化性能评价、电化学研究 E-mail: xiaoming.liu@mail.zjxu.edu.cn

  • 中图分类号: TQ460.4, TQ340.47, O69

Preparation of electrospun composite fibers functionalized with an iron complex and their CO-release behavior

  • 摘要: CO缓释材料对CO药用价值研究具有重要意义。本论文以二甲基乙酰胺、丙酮为溶剂,铁化合物[Fe(η5-Cp)(CO)2I]为铁基一氧化碳释放剂(FeCORM),醋酸纤维素(CA)、聚乙烯吡咯烷酮(PVP)为基体聚合物,通过静电纺丝技术制备了不同FeCORM含量的微纳米复合纤维材料,并通过ATR-FTIR、UV-vis DRS、SEM等技术对有关材料进行了表征。研究了这些材料在不同光源(蓝、绿、红)照射下CO释放行为,分析了其CO释放动力学,并定量分析了不同材料释放CO的量。结果表明:复合纤维材料释放CO的速率与FeCORM含量及光源波长有关,一般含量越低、波长越短则释放速率越快;其释放过程符合一级动力学模型,表观速率常数(kobs)在1.59 ~ 0.11 min−1之间、半衰期t1/2在0.4 ~ 6.3 min左右。复合纤维材料释放CO的剂量y与FeCORM的质量百分含量x间呈良好线性依赖关系,满足方程式:y = 0.0284·x − 0.0158。

     

  • 图  1  (a) FeCORM的制备;(b) 静电纺法制备功能化CA-PVP基复合纤维材料及其光诱导释放CO性能示意图

    Figure  1.  (a) Synthesis of Fe-based CO-releasing molecule (FeCORM); (b) Preparation of FeCORM-functionalized CA-PVP composite fibers via electrospinning and their CO-release behaviors upon photo-induction

    图  2  FeCORM在DCM中的羰基特征红外光谱图

    Figure  2.  FTIR of carbonyl in FeCORM in DCM

    图  3  (a-f)不同FeCORM含量的CA-PVP基复合纤维材料的微观形貌SEM图(插图:尺寸分布)

    Figure  3.  (a-f) SEM images of CA-PVP-based composite fibers with various amounts of FeCORM (insert: diameter distribution)

    图  4  30FeCORM/CA-PVP的EDS mapping测试C, N, O, Fe, I元素在材料中的分布情况

    Figure  4.  The EDS mapping test for the distribution of C, N, O, Fe, and I elements in 30FeCORM/CA-PVP

    图  5  FeCORM/CA-PVP复合纤维材料的ATR-FTIR光谱图

    Figure  5.  ATR-FTIR spectra of the FeCORM/CA-PVPcomposite fibers

    图  6  FeCORM/CA-PVP复合纤维的固体紫外可见漫反射光谱图

    Figure  6.  Solid UV-visible diffuse-reflectance spectra (UV-vis DRS) of the FeCORM/CA-PVP composite fibers

    图  7  10FeCORM/CA-PVP材料在室温、空气、暗处下随时间变化的红外光谱图

    Figure  7.  FTIR spectral variations of 10FeCORM/CA-PVP fibers in dark at ambient temperature under open-air atmosphere

    图  8  FeCORM/CA-PVP复合纤维材料在蓝光照射下的ATR-FTIR光谱图变化(a-e)及其CO释放动力学分析(f)

    Figure  8.  ATR-FTIR spectra variations of FeCORM/CA-PVP composite fibers upon irradiation of a blue light (a-e), and the corresponding kinetic analysis of CO-release (f)

    图  9  FeCORM/CA-PVP复合纤维材料在绿光照射下的ATR-FTIR光谱图变化(a-e)及其CO释放动力学分析(f)

    Figure  9.  ATR-FTIR spectral variations of FeCORM/CA-PVP composite fibers upon irradiation of a green light (a-e), and the corresponding kinetic analysis of CO-release (f)

    图  10  FeCORM/CA-PVP复合纤维材料在红光照射下的ATR-FTIR光谱图变化(a-e)及其CO释放动力学分析(f)

    Figure  10.  ATR-FTIR spectral variations of FeCORM/CA-PVP composite fibers upon irradiation of a red light (a-e), and the corresponding kinetic analysis of CO-release (f)

    图  11  (a)FeCORM/CA-PVP材料在蓝光诱导下释放CO的量(b)及其与复合材料中FeCORM含量间的线性相关性

    Figure  11.  (a) Quantifications of released CO for FeCORM/CA-PVP fibers upon irradiation of a blue light, and (b) the corresponding linear relationship of the amounts of CO against the contents of FeCORM in the composite fibers

    表  1  不同铁基一氧化碳释放剂(FeCORM)含量纺丝溶液的组成

    Table  1.   Electrospun solutions component with different iron-based carbon monoxide-releasing molecule (FeCORM) contents.

    MaterialCA /
    mg
    PVP /
    mg
    DMAC /
    mL
    ACT /
    mL
    FeCORM /
    mg
    CA-PVP240801.02.00
    10FeCORM/CA-PVP240801.02.010
    20FeCORM/CA-PVP240801.02.020
    30FeCORM/CA-PVP240801.02.030
    40FeCORM/CA-PVP240801.02.040
    50FeCORM/CA-PVP240801.02.050
    Notes:Cellulose Acetate (CA), polyvinyl pyrrolidone (PVP),Dimethyl acetamide (DMAC),Polyvinyl pyrrolidone (PVP)
    下载: 导出CSV

    表  2  FeCORM/CA-PVP复合纤维材料静电纺丝参数

    Table  2.   Parameters of the electrospinning of FeCORM/CA-PVP composite fibers

    MaterialVoltage/
    kV
    Rate/
    (μm·s−1)
    Temperature/
    °C
    Humidity/
    %
    CA-PVP15.000.521.340
    10FeCORM/
    CA-PVP
    15.040.522.341
    20FeCORM/
    CA-PVP
    15.050.520.242
    30FeCORM/
    CA-PVP
    15.100.421.348
    40FeCORM/
    CA-PVP
    15.100.420.342
    50FeCORM/
    CA-PVP
    15.100.421.141
    下载: 导出CSV

    表  3  FeCORM/CA-PVP复合纤维材料在不同波长光诱导下CO释放动力学数据

    Table  3.   Kinetic data of FeCORM/CA-PVP composite fibers upon irradiation of lights with different wavelengths

    Materialkobs / min−1t1/2 / min
    BlueGreenRedBlueGreenRed
    10FeCORM/CA-PVP1.590.410.120.41.75.8
    20FeCORM/CA-PVP0.950.360.110.71.96.3
    30FeCORM/CA-PVP0.710.290.121.02.45.8
    40FeCORM/CA-PVP0.570.240.111.22.96.3
    50FeCORM/CA-PVP0.400.230.111.73.06.3
    Notes: kobs is the observed rate constant, and t1/2 the halftime.
    下载: 导出CSV
  • [1] KIM H P, RYTER S W, CHOI A M K. CO as a cellular signaling molecule[J]. Annual Review of Pharmacology and Toxicology,2006,46(1):411-449. doi: 10.1146/annurev.pharmtox.46.120604.141053
    [2] MANN B E. Medicinal Organometallic Chemistry[J]. Springer-Verlag Berlin Heidelberg,2010:247-285.
    [3] MOTTERLINI R, OTTERBEIN L E. The therapeutic potential of carbon monoxide[J]. Nature Reviews Drug Discovery,2010,9(9):728-743. doi: 10.1038/nrd3228
    [4] ADACH W, OLAS B. Carbon monoxide and its donors – their implications for medicine[J]. Future Medicinal Chemistry,2019,11(1):61-73. doi: 10.4155/fmc-2018-0215
    [5] ISMAILOVA A, KUTER D, BOHLE D S, et al. An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules [J]. Bioinorganic Chemistry and Applications, 2018: Article ID 8547364.
    [6] ANDREADOU I, ILIODROMITIS E K, RASSAF T, et al. The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning[J]. British Journal of Pharmacology,2015,172(6):1587-1606. doi: 10.1111/bph.12811
    [7] RUAN Y, WANG L, ZHAO Y, et al. Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia-reperfusion injury[J]. Kidney International,2014,86(3):525-537. doi: 10.1038/ki.2014.80
    [8] MOTTERLINI R, CLARK J E, FORESTI R, et al. Carbon monoxide-releasing molecules - Characterization of biochemical and vascular activities[J]. Circulation Research,2002,90(2):E17-E24.
    [9] FORD P C. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide[J]. Coordination Chemistry Reviews,2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018
    [10] LING K, MEN F, WANG W-C, et al. Carbon monoxide and its controlled release: therapeutic application, detection and development of carbon monoxide-releasing molecules (CO-RMs)[J]. Journal of Medicinal Chemistry,2017,61(7):2611-2635.
    [11] ABEYRATHNA N, WASHINGTON K, BASHUR C, et al. Nonmetallic carbon monoxide releasing molecules (CORMs)[J]. Organic & Biomolecular Chemistry,2017,15(41):8692-8699.
    [12] MARHENKE J, TREVINO K, WORKS C. The chemistry, biology and design of photochemical CO releasing molecules and the efforts to detect CO for biological applications[J]. Coordination Chemistry Reviews,2016,306:533-543. doi: 10.1016/j.ccr.2015.02.017
    [13] ROMAO C C, BLATTLER W A, SEIXAS J D, et al. Developing drug molecules for therapy with carbon monoxide[J]. Chemical Society Reviews,2012,41(9):3571-3583. doi: 10.1039/c2cs15317c
    [14] JIANG X, XIAO Z, ZHONG W, et al. Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs)[J]. Coordination Chemistry Reviews,2021,429:213634. doi: 10.1016/j.ccr.2020.213634
    [15] GUO Z, JIN J, XIAO Z, et al. Four iron(II) carbonyl complexes containing both pyridyl and halide ligands: Their synthesis, characterization, stability, and anticancer activity[J]. Applied Organometallic Chemistry,2021,35(1):e6045.
    [16] GUO J, GUO Z, XIAO Z, et al. Further exploration of the reaction between cis-[Fe(CO)4I2] and alkylamines: An aminium salt of fac-[Fe(CO)3I3] or an amine-bound complex of fac-[Fe(CO)3I2(NH2R)]?[J]. Applied Organometallic Chemistry,2021,35(8):e6280.
    [17] YANG X, JIN J, GUO Z, et al. The monoiron anion fac-[Fe(CO)3I3] and its organic aminium salts: their preparation, CO-release, and cytotoxicity[J]. New Journal of Chemistry,2020,44(25):10300-10308. doi: 10.1039/D0NJ01182G
    [18] XIAO Z, JIANG R, JIN J, et al. Diiron(ii) pentacarbonyl complexes as CO-releasing molecules: their synthesis, characterization, CO-releasing behaviour and biocompatibility[J]. Dalton Transactions,2019,48(2):468-477. doi: 10.1039/C8DT03982H
    [19] OU J, ZHENG W, XIAO Z, et al. Core-shell materials bearing iron(ii) carbonyl units and their CO-release via an upconversion process[J]. Journal of Materials Chemistry B,2017,5(41):8161-8168. doi: 10.1039/C7TB01434A
    [20] JIANG X, CHEN L, WANG X, et al. Photoinduced Carbon Monoxide Release from Half-Sandwich Iron(II) Carbonyl Complexes by Visible Irradiation: Kinetic Analysis and Mechanistic Investigation[J]. Chemistry-a European Journal,2015,21(37):13065-13072. doi: 10.1002/chem.201501348
    [21] JIANG X, LONG L, WANG H, et al. Diiron hexacarbonyl complexes as potential CO-RMs: CO-releasing initiated by a substitution reaction with cysteamine and structural correlation to the bridging linkage[J]. Dalton Transactions,2014,43(26):9968-9975. doi: 10.1039/C3DT53620C
    [22] LONG L, JIANG X, WANG X, et al. Water-soluble diiron hexacarbonyl complex as a CO-RM: controllable CO-releasing, releasing mechanism and biocompatibility[J]. Dalton Transactions,2013,42(44):15663-15669. doi: 10.1039/c3dt51281a
    [23] MENG J, JIN Z, ZHAO P, et al. A multistage assembly/disassembly strategy for tumor-targeted CO delivery[J]. Science Advances,2020,6(20):eaba1362. doi: 10.1126/sciadv.aba1362
    [24] WANG X-S, ZENG J-Y, LI M-J, et al. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy[J]. ACS Nano,2020,14(8):9848-9860. doi: 10.1021/acsnano.0c02516
    [25] LI Y, DANG J, LIANG Q, et al. Carbon monoxide (CO)-Strengthened cooperative bioreductive anti-tumor therapy via mitochondrial exhaustion and hypoxia induction[J]. Biomaterials,2019,209:138-151. doi: 10.1016/j.biomaterials.2019.04.004
    [26] YAO X, YANG P, JIN Z, et al. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis[J]. Biomaterials,2019,197:268-283. doi: 10.1016/j.biomaterials.2019.01.026
    [27] NAKAE T, HIROTSU M, NAKAJIMA H. CO Release from N, C, S-Pincer Iron(III) Carbonyl Complexes Induced by Visible-to-NIR Light Irradiation: Mechanistic Insight into Effects of Axial Phosphorus Ligands[J]. Inorganic Chemistry,2018,57(14):8615-8626. doi: 10.1021/acs.inorgchem.8b01407
    [28] SITNIKOV N S, LI Y, ZHANG D, et al. Design, Synthesis, and Functional Evaluation of CO-Releasing Molecules Triggered by Penicillin G Amidase as a Model Protease[J]. Angewandte Chemie International Edition,2015,54(42):12314-12318. doi: 10.1002/anie.201502445
    [29] ROMANSKI S, KRAUS B, SCHATZSCHNEIDER U, et al. Acyloxybutadiene Iron Tricarbonyl Complexes as Enzyme-Triggered CO-Releasing Molecules (ET-CORMs)[J]. Angewandte Chemie International Edition,2011,50(10):2392-2396. doi: 10.1002/anie.201006598
    [30] INABA H, FUJITA K, UENO T. Design of biomaterials for intracellular delivery of carbon monoxide[J]. Biomaterials Science,2015,3(11):1423-1438. doi: 10.1039/C5BM00210A
    [31] 曹延娟, 辛斌杰, 张杰, 等. 天然纤维素/聚丙烯腈抗菌纳米纤维的制备与表征[J]. 复合材料学报, 2015, 32(4):1042-1052.

    CAO Y, XIN B, ZHANG J, et al. Preparation and characterization of natural cellulose/polyacrylonitrile antibacterial nanofibers[J]. Acta Materiae Compositae Sinica,2015,32(4):1042-1052(in Chinese).
    [32] 周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7):1657-1666.

    ZHOU K, TANG Y, LU L, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica,2020,37(7):1657-1666(in Chinese).
    [33] ZHU D, XIAO Z, LIU X. Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]-hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media[J]. International Journal of Hydrogen Energy,2015,40(15):5081-5091. doi: 10.1016/j.ijhydene.2015.02.050
    [34] XU E, XIAO Z, LIU H, et al. [FeFe]-hydrogenase-inspired membrane electrode and its catalytic evolution of hydrogen in water[J]. RSC Advances,2012,2(27):10171-10174. doi: 10.1039/c2ra21036c
    [35] LONG Y, YAN X, WANG X, et al. Electrospinning: Nanofabrication and Applications[J]. William Andrew Publishing,2019:21-52.
  • 加载中
计量
  • 文章访问数:  124
  • HTML全文浏览量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 录用日期:  2021-12-08
  • 修回日期:  2021-11-27
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回