Research on thermal conductivity and insulation of oriented silicon carbide whisker silicone rubber composites
-
摘要:
优化热界面材料性能是解决设备散热问题有效途径之一,但基于“导热网理论”,导热网络的形成需要提高填料的含量,但含量较大时,势必会造成基体的绝缘性严重下降。为降低含量,本文提出了一种借助外磁场诱导填料取向来实现填料分布结构调控的方法,能在较低填量下快速实现导热路径的建立。以液体硅橡胶为基体,碳化硅晶须(SiCw)为填料,首先通过共沉淀法对SiCw进行四氧化三铁(Fe3O4)的包覆改性,将其均匀分散至液体硅橡胶中,并在稳恒磁场中固化,制备出SiCw取向结构的硅橡胶基导热复合材料。SiCw取向结构在基体中可以快速建立导热通路,达到降低填量含量的目的。通过COMSOL对SiCw随机分散与取向排列的硅橡胶复合材料进行模拟仿真,仿真结果表明,10wt%的SiCw可使硅橡胶导热系数提升60%,体积电阻率在1015 Ω∙cm以上,而10wt%取向SiCw可使硅橡胶导热系数提升170%,体积电阻率在1014 Ω∙cm以上,与纯硅橡胶相比下降两个数量级,但仍然具有良好的绝缘性能。 仿真与实验数据对比表The comparison table of simulation results and experimental data Experimental data Simulation results Name of sample SIC10 SIC10@FE10* SIC10 SIC10@FE10* Thermal conductivity/(W/(m·K)) 0.167 0.235 0.221 0.374 Volume resistivity/Ω·cm 3.71×1015 8.11×1014 4×1015 1×1014 Abstract: With the increasing integration density and power density of electronic products. It is particularly important to optimize the research of thermal interface materials. In this paper, one-dimensional silicon carbide whisker (SiCw) was used as filler and silicone rubber was used as matrix to prepare thermal conductive silicone rubber composites. The microstructure, phase structure, thermal conductivity and insulation of the composites were comprehensively analyzed. Firstly, the modified material of SiCw coated by Fe3O4 was prepared by coprecipitation method. Secondly, SiCw coated with Fe3O4 was evenly dispersed in the liquid silicone rubber matrix. Finally, it is placed in a constant magnetic field to complete whisker orientation and matrix curing. The results show that the surface of SiCw whiskers is coated with Fe3O4 nanoparticles, and they are oriented in the silicone rubber matrix. Silicone rubber composites with SiCw oriented structure were prepared. When the oriented SiCw reaches 10wt%, the thermal conductivity can be increased by 72% compared with pure silicone rubber, and it is 40% higher than that filled with non-oriented 10wt%SiCw. Compared with pure silicone rubber, the volume resistivity decreases by two orders of magnitude. But it still has good insulation. The silicone rubber composites with randomly dispersed and oriented SiCw were simulated by COMSOL. The simulation results show that the thermal conductivity of silicone rubber can be improved by 60% with 10wt% SiCw. The volume resistivity is above 1015 Ω∙cm. However, 10wt% oriented SiCw can improve the thermal conductivity of silicone rubber by 170% and the volume resistivity is above 1014 Ω∙cm. It is consistent with the trend of experimental results.-
Key words:
- silicone rubber /
- silicon carbide whisker /
- orientation /
- thermal conductivity /
- insulation
-
1 仿真与实验数据对比表
1. The comparison table of simulation results and experimental data
Experimental data Simulation results Name of sample SIC10 SIC10@FE10* SIC10 SIC10@FE10* Thermal conductivity/(W/(m·K)) 0.167 0.235 0.221 0.374 Volume resistivity/Ω·cm 3.71×1015 8.11×1014 4×1015 1×1014 表 1 试样编号明细表
Table 1. Specimen details
Name of sample Detailed description FE@SIC Fe3O4 coated SiCw SR Pure silicone rubber sample SiCw /SR SiCw filled silicone rubber series samples SIC10 10 wt% SiCw filled silicone rubber sample FE@SIC10* Magnetized sample of 10 wt% FE@SIC
silicone rubberFE@SIC10 10 wt% FE@SIC silicone rubber sample SICFE10* Magnetized sample of 10 wt%SiCw+Fe3O4
silicone rubber表 2 SiCw/SR的导热系数表
Table 2. The table of thermal conductivity of SiCw/SR
SiCw/SR 0 wt% 5 wt% 10 wt% 15 wt% 20 wt% Thermal conductivity/(W·(m·K)−1) 0.137 0.148 0.167 0.181 0.236 表 3 FE@SIC10*导热系数对比表
Table 3. The comparison table of thermal conductivity of FE@SIC10*
Name of sample SR SIC10 SICFE10* FE@SIC10 FE@SIC10* Thermal conductivity/(W·(m·K)−1) 0.137 0.167 0.172 0.168 0.235 表 4 SiCw/SR体积电阻率表
Table 4. The table of volume resistivity of SiCw/SR
SiCw/SR 0 wt% 5 wt% 10 wt% 15 wt% 20 wt% Volume resistivity/(Ω·cm) 4×1016 7.84×1015 3.7×1015 5.6×1014 3.9×1014 表 5 FE@SIC10*体积电阻率对比表
Table 5. The comparison table of volume resistivity of FE@SIC10*
Name of sample SR SIC10 FE@SIC10* Volume resistivity/(Ω·cm) 4×1016 3.7×1015 8.1×1014 表 6 仿真与实验数据对比表
Table 6. The comparison table of simulation results and experimental data
Experimental data Simulation results Name of sample SIC10 SIC10@FE10* SIC10 SIC10@FE10* Thermal conductivity/(W·(m·K)-1) 0.167 0.235 0.221 0.374 Volume resistivity/(Ω·cm) 3.71×1015 8.11×1014 4×1015 1×1014 -
[1] FENG Changping, YANG Luyao, YANG Jie, et al. Recent advances in polymer-based thermal interface materials for thermal management: a mini-review[J]. Composites Communications,2020,22:1-10. [2] XUE Yang, WANG Haosheng, LI Xiaofei, et al. Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing[J]. Composites Part A:Applied Science and Manufacturing,2021,144:1-8. [3] ZHANG Li, DENG Hua, FU QIANG. Recent progress on thermal conductive and electrical insulating polymer composites[J]. Composites Communications,2018,8:74-82. doi: 10.1016/j.coco.2017.11.004 [4] 周文英, 王蕴, 曹国政, 等. 本征导热高分子材料研究进展[J]. 复合材料学报, 2021, 38(7):2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001ZHOU Wenying, WANG Yun, CAO Guozheng, et al. Research progress of polymer materials with intrinsic heat conduction[J]. Journal of Composite Materials,2021,38(7):2038-2055(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210312.001 [5] NIU Hongyu, REN Yanjuan, GUO Haichang, et al. Recent progress on thermally Conductive and electrical insulating rubber composites: design, processing and applications[J]. Composites Communications,2020,22(100430):1-12. [6] ZHANG Hao, ZHANG Xiaowen, FANG Zhou, et al. Recent advances in preparation, mechanisms, and applications of thermally conductive polymer composites: a review[J]. Journal of Composites Science,2020,4(4):180-226. doi: 10.3390/jcs4040180 [7] VYSOTSKY V V. ROLDUGHIN V. I. Aggregate structure and percolation properties of metal-filled polymer films[J]. Colloids and Surfaces,1999,160(2):171-180. doi: 10.1016/S0927-7757(99)00355-6 [8] 李宾, 刘妍, 孙斌, 等. 聚合物基导热复合材料的性能及导热机理[J]. 化工学报, 2009, 60(10):2650-2655.LI Bin, LIU Yan, SUN Bin, et al. Properties and thermal conductivity mechanism of polymer-based thermal conductivity composites[J]. Journal of Chemical Technology,2009,60(10):2650-2655(in Chinese). [9] YANG Xue, LI Xiaofei, WANG Haosheng, et al. Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites[J]. Materials & Design,2019,165:107580-107588. [10] XU Shuai, LIU Hui, LI Qiao mei, et al. Influence of magnetic alignment and layered structure of BN&Fe/EP on thermal conducting performance[J]. Journal of Materials Chemistry C,2016,4(4):872-878. doi: 10.1039/C5TC03791C [11] SONG Shiqiang, WANG Jinyuan, LIU Cheng, et al. A facile route to fabricate thermally conductive and electrically insulating polymer composites with 3 D interconnected graphene at an ultralow filler loading[J]. Nanoscale,2019,11(32):15234-15244. doi: 10.1039/C9NR05153H [12] 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7):3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of Oriented Boron Nitride @ Polydopamine/Nano Silver Thermal Conductive Network and Its Silicone Rubber Composite Thermal Conductive Gasket by Ice Template Method[J]. Acta Composites,2022,39(7):3131-3143(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210906.001 [13] MA H Q, GAO B, WANG M, et al. Vertical alignment of carbon fibers under magnetic field driving to enhance the thermal conductivity of silicone composites, Polymers for Advanced Technologies [J], 2021, 32(11): 4318-4325 [14] 贾园, 马欢, 杨菊香, 等. 磁性四氧化三铁纳米粒子的制备及其应用研究进展[J]. 化学工业与工程, 2022: 1-12.JIA Yuan, MA Huan, YANG Juxiang, et al. Progress in preparation and application of magnetic Fe3 O4 nanoparticles [J]. Chemical Industry and Engineering, 2022: 1-12. (in Chinese) [15] 侯涛, 徐仁扣. 胶体颗粒表面双电层之间的相互作用研究进展[J]. 土壤, 2008, 40(3):377-381. doi: 10.3321/j.issn:0253-9829.2008.03.008HOU Tao, XU Renkou. Research progress on the interaction between electric double layers on the surface of colloidal particles[J]. Soil,2008,40(3):377-381(in Chinese). doi: 10.3321/j.issn:0253-9829.2008.03.008 [16] T Merle Méjean, E Abdelmounm. P Quintard Quintard. Oxide layer on silicon carbide powder: A Ft-Ir investigation[J]. Journal of Molecular Structure 1995, 349(1): 105-108. [17] WANG Hongyu, BERTAAND Yolande, FISCHMAN Gary S. Microstructure of silicon carbide whiskers synthesized by carbothermal reduction of silicon nitride[J]. Journal of the American Ceramic Society,1992,75(5):1080-1084. doi: 10.1111/j.1151-2916.1992.tb05541.x [18] SHEN Mingxia, CUI Yinxin, HE Jing, et al. Thermal conductivity model of filled polymer composites[J]. International Journal of Minerals, Metallurgy, and Materials,2011,18(5):623-631. doi: 10.1007/s12613-011-0487-9 [19] ACARI Y, UEDA A, NACAI S. Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers[J]. Journal of Applied Polymer Science,1991,43(6):1117-1124. doi: 10.1002/app.1991.070430612 [20] 周文英, 丁小卫. 导热高分子材料[M]. 北京: 国防工业出版社, 2014: 29ZHOU Wenying, DING Xiaowei. Thermal Conductive Polymer Materials [M]. Beijing: National Defense Industry Press, 2014: 29. (in Chinese) [21] ACARI Y, UEDA A, NACAI S. Thermal conductivities of composites in several types of dispersion systems[J]. Journal of Applied Polymer Science,1991,42(6):1665-1669. doi: 10.1002/app.1991.070420621 [22] WONG C P, S RAJA BOLLAMPALLY. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging[J]. Journal of Applied Polymer Science,1998,74:3396-3403. [23] GU Junwei. RUAN Kunpeng. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics[J]. Nanomicro Lett,2021,13(110):1-9. [24] 任佳, 蔡静. 导热系数测量方法及应用综述[J]. 计测技术, 2018, 38(S1):46-49.REN Jia, CAI Jing. Summary of thermal conductivity measurement methods and applications[J]. Measurement technology,2018,38(S1):46-49(in Chinese). [25] 张正荣. 传热学[M]. 北京市: 高等教育出版社, 1982: 1-17.ZHANG Zhengrong. H eat transfer [M]. Beijing: Higher Education Press, 1982: 11-17. (in Chinese) -

计量
- 文章访问数: 80
- HTML全文浏览量: 45
- 被引次数: 0