留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

取向碳化硅晶须硅橡胶复合材料导热性及绝缘性

于天骄 宋伟 冯景涛 彭修峰 宋文宏

于天骄, 宋伟, 冯景涛, 等. 取向碳化硅晶须硅橡胶复合材料导热性及绝缘性[J]. 复合材料学报, 2024, 41(1): 134-143. doi: 10.13801/j.cnki.fhclxb.20230404.002
引用本文: 于天骄, 宋伟, 冯景涛, 等. 取向碳化硅晶须硅橡胶复合材料导热性及绝缘性[J]. 复合材料学报, 2024, 41(1): 134-143. doi: 10.13801/j.cnki.fhclxb.20230404.002
YU Tianjiao, SONG Wei, FENG Jingtao, et al. Research on thermal conductivity and insulation of oriented silicon carbide whisker silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 134-143. doi: 10.13801/j.cnki.fhclxb.20230404.002
Citation: YU Tianjiao, SONG Wei, FENG Jingtao, et al. Research on thermal conductivity and insulation of oriented silicon carbide whisker silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 134-143. doi: 10.13801/j.cnki.fhclxb.20230404.002

取向碳化硅晶须硅橡胶复合材料导热性及绝缘性

doi: 10.13801/j.cnki.fhclxb.20230404.002
基金项目: 国家自然科学基金(51541702;51607048)
详细信息
    通讯作者:

    宋伟,博士,教授,博士生导师,研究方向为导热复合材料研发及绝缘材料改性研究 E-mail: sw7912@hrbust.edu.cn

  • 中图分类号: TM211;TB333

Research on thermal conductivity and insulation of oriented silicon carbide whisker silicone rubber composites

Funds: National Natural Science Foundation of China (51541702; 51607048)
  • 摘要: 随着电子产品的集成密度和功率密度不断增加,优化热界面材料变的尤为重要。本文以一维碳化硅晶须(SiCw)为填料,硅橡胶为基体制备出导热硅橡胶复合材料,综合分析了复合材料的微观形貌、物相结构、导热性及绝缘性。首先通过共沉淀法制备出Fe3O4对SiCw包覆的改性材料,其次将包覆Fe3O4的SiCw在液体硅橡胶基体中分散均匀,最后将其置于恒稳磁场中完成晶须取向及基体固化。结果表明:SiCw晶须表面包覆一层Fe3O4纳米颗粒且在硅橡胶基体中呈现取向排列,制备出SiCw取向结构的硅橡胶复合材料。当取向SiCw含量达到10wt%时,相比于纯硅橡胶导热系数可提升72%,比未取向10wt%SiCw填充的高40%。相比于纯硅橡胶体积电阻率下降两个数量级,但仍然具有良好的绝缘性。通过COMSOL对SiCw随机分散与取向排列的硅橡胶复合材料进行模拟仿真,仿真结果表明,含量10wt%的SiCw可使硅橡胶导热系数提升60%,体积电阻率在1015 Ω∙cm以上,而10wt%取向SiCw可使硅橡胶导热系数提升170%,体积电阻率在1014 Ω∙cm以上,与实验结果的趋势相一致。

     

  • 图  1  Fe3O4包覆碳化硅晶须(SiCw)的制备流程

    Figure  1.  Preparation process of Fe3O4 coated SiC whisker (SiCw)

    图  2  硅橡胶复合材料制备流程

    Figure  2.  Preparation process of silicone rubber composites

    图  3  XRD测试示意图

    Figure  3.  Schematic diagram of XRD test

    图  4  SiCw及FE@SIC的SEM图像

    Figure  4.  SEM images of SiCw and FE@SIC

    图  5  硅橡胶(SR)试样断面SEM图像

    Figure  5.  SEM images of silicone rubber (SR) section

    图  6  Fe3O4及FE@SIC的XRD图谱

    Figure  6.  XRD patterns of Fe3O4 and FE@SIC

    图  7  SR、SIC10、SICFE10*、FE@SIC10、FE@SIC10*的XRD图谱

    Figure  7.  XRD patterns of SR, SIC10, SICFE10*, FE@SIC10, FE@SIC10*

    图  8  SiCw/SR导热系数对数值线性拟合图

    Figure  8.  Linear fitting diagram of SiCw/SR thermal conductivity versus numerical value

    图  9  导热模型与SiCw/SR的导热系数折线图

    Figure  9.  Thermal conductivity model and thermal conductivity line chart of SiCw/SR

    图  10  SIC10、FE@SIC10*截面模拟图

    Figure  10.  Simulation diagram of SIC10, FE@SIC10* section

    图  11  FE@SIC10*与SIC10的几何仿真模型

    Figure  11.  Geometric simulation model diagram of FE@SIC10* and SIC10

    图  12  FE@SIC10*和SIC10几何模型在热场下的温度分布

    Figure  12.  Temperature distribution of geometric model of FE@SIC10* and SIC10 under thermal field

    表  1  仿真与实验数据对比表

    Table  1.   The comparison table of simulation results and experimental data

    Experimental dataSimulation results
    Name of sampleSIC10SIC10@FE10*SIC10SIC10@FE10*
    Thermal conductivity/(W/(m·K))0.1670.2350.2210.374
    Volume resistivity/Ω·cm3.71×10158.11×10144×10151×1014
    下载: 导出CSV

    表  1  试样编号明细表

    Table  1.   Specimen details

    Name of sampleDetailed description
    FE@SICFe3O4 coated SiCw
    SRPure silicone rubber sample
    SiCw/SRSiCw filled silicone rubber series samples
    SIC1010wt% SiCw filled silicone rubber sample
    FE@SIC10*Magnetized sample of 10wt%FE@SIC
    silicone rubber
    FE@SIC1010wt%FE@SIC silicone rubber sample
    SICFE10*Magnetized sample of 10wt%SiCw+Fe3O4
    silicone rubber
    下载: 导出CSV

    表  2  SiCw/SR的导热系数

    Table  2.   Thermal conductivity of SiCw/SR

    SiCw/SR/wt% Thermal conductivity/(W·(m·K)−1)
    0 0.137
    5 0.148
    10 0.167
    15 0.181
    20 0.236
    下载: 导出CSV

    表  3  FE@SIC10*导热系数对比表

    Table  3.   Comparison table of thermal conductivity of FE@SIC10*

    Name of sample Thermal conductivity/(W·(m·K)−1)
    SR 0.137
    SIC10 0.167
    SICFE10* 0.172
    FE@SIC10 0.168
    FE@SIC10* 0.235
    下载: 导出CSV

    表  4  SiCw/SR体积电阻率

    Table  4.   Volume resistivity of SiCw/SR

    SiCw/SR/wt% Volume resistivity/(Ω·cm)
    0 4.00×1016
    5 7.84×1015
    10 3.70×1015
    15 5.60×1014
    20 3.90×1014
    下载: 导出CSV

    表  5  FE@SIC10*体积电阻率对比

    Table  5.   Comparison of volume resistivity of FE@SIC10*

    Name of sample Volume resistivity/(Ω·cm)
    SR 4.0×1016
    SIC10 3.7×1015
    FE@SIC10* 8.1×1014
    下载: 导出CSV

    表  6  试样性能的仿真与实验数据对比

    Table  6.   Comparison of simulation results and experimental data of sample properties

    Sample Thermal conductivity/(W·(m·K)−1) Volume resistivity/(Ω·cm)
    Experimental
    data
    Simulation
    results
    Experimental
    data
    Simulation
    results
    SIC10 0.167 0.221 3.70×1015 4.00×1015
    SIC10@
    FE10*
    0.235 0.374 8.11×1014 1.00×1014
    下载: 导出CSV
  • [1] FENG C P, YANG L Y, YANG J, et al. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review[J]. Composites Communications,2020,22:100528. doi: 10.1016/j.coco.2020.100528
    [2] XUE Y, WANG H S, LI X F, et al. Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing[J]. Composites Part A: Applied Science and Manufacturing,2021,144:106336. doi: 10.1016/j.compositesa.2021.106336
    [3] ZHANG L, DENG H, FU Q. Recent progress on thermal conductive and electrical insulating polymer composites[J]. Composites Communications,2018,8:74-82. doi: 10.1016/j.coco.2017.11.004
    [4] 周文英, 王蕴, 曹国政, 等. 本征导热高分子材料研究进展[J]. 复合材料学报, 2021, 38(7):2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001

    ZHOU Wenying, WANG Yun, CAO Guozheng, et al. Research progress of polymer materials with intrinsic heat conduction[J]. Acta Materiae Compositae Sinica,2021,38(7):2038-2055(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210312.001
    [5] NIU H Y, REN Y J, GUO H C, et al. Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing and applications[J]. Composites Communications,2020,22:100430. doi: 10.1016/j.coco.2020.100430
    [6] ZHANG H, ZHANG X W, FANG Z, et al. Recent advances in preparation, mechanisms, and applications of thermally conductive polymer composites: A review[J]. Journal of Composites Science,2020,4(4):180-226. doi: 10.3390/jcs4040180
    [7] VYSOTSKY V V, ROLDUGHIN V I. Aggregate structure and percolation properties of metal-filled polymer films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,160(2):171-180. doi: 10.1016/S0927-7757(99)00355-6
    [8] 李宾, 刘妍, 孙斌, 等. 聚合物基导热复合材料的性能及导热机理[J]. 化工学报, 2009, 60(10):2650-2655.

    LI Bin, LIU Yan, SUN Bin, et al. Properties and thermal conductivity mechanism of polymer-based thermal conductivity composites[J]. Journal of Chemical Technology,2009,60(10):2650-2655(in Chinese).
    [9] YANG X, LI X F, WANG H S, et al. Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites[J]. Materials & Design,2019,165:107580-107588.
    [10] XU S, LIU H, LI Q M, et al. Influence of magnetic alignment and layered structure of BN&Fe/EP on thermal conducting performance[J]. Journal of Materials Chemistry C,2016,4(4):872-878. doi: 10.1039/C5TC03791C
    [11] SONG S Q, WANG J Y, LIU C, et al. A facile route to fabricate thermally conductive and electrically insulating polymer composites with 3D interconnected graphene at an ultralow filler loading[J]. Nanoscale,2019,11(32):15234-15244. doi: 10.1039/C9NR05153H
    [12] 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7):3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001

    WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nano silver thermal conductive network and its silicone rubber composite thermal conductive gasket by ice template method[J]. Acta Materiae Compositae Sinica,2022,39(7):3131-3143(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210906.001
    [13] MA H Q, GAO B, WANG M, et al. Vertical alignment of carbon fibers under magnetic field driving to enhance the thermal conductivity of silicone composites[J]. Polymers for Advanced Technologies, 2021, 32(11): 4318-4325.
    [14] 中国石油和化学工业联合会. 硫化橡胶或热塑性橡胶体积和/或表面电阻率的测定: GB/T 40719—2021[S]. 北京: 中国标准出版社, 2019.

    China Petroleum and Chemical Industry Federation. Rubber, vulcanized or thermoplastic—Determination of volume and/or surface resistivity: GB/T 40719—2021[S]. Beijing: Standards Press of China, 2019(in Chinese).
    [15] 贾园, 马欢, 杨菊香, 等. 磁性四氧化三铁纳米粒子的制备及其应用研究进展[J]. 化学工业与工程, 2023, 40(5): 8-18.

    JIA Yuan, MA Huan, YANG Juxiang, et al. Progress in preparation and application of magnetic Fe3O4 nanoparticles[J]. Chemical Industry and Engineering, 2023, 40(5): 8-18(in Chinese).
    [16] 侯涛, 徐仁扣. 胶体颗粒表面双电层之间的相互作用研究进展[J]. 土壤, 2008, 40(3):377-381. doi: 10.3321/j.issn:0253-9829.2008.03.008

    HOU Tao, XU Renkou. Research progress on the interaction between electric double layers on the surface of colloidal particles[J]. Soil,2008,40(3):377-381(in Chinese). doi: 10.3321/j.issn:0253-9829.2008.03.008
    [17] MERLE MÉJEAN T, ABDELMOUNM E, QUINTARD P. Oxide layer on silicon carbide powder: A Ft-Ir investigation[J]. Journal of Molecular Structure, 1995, 349: 105-108.
    [18] WANG H Y, BERTAAND Y, FISCHMAN G S. Microstructure of silicon carbide whiskers synthesized by carbothermal reduction of silicon nitride[J]. Journal of the American Ceramic Society,1992,75(5):1080-1084. doi: 10.1111/j.1151-2916.1992.tb05541.x
    [19] SHEN M X, CUI Y X, HE J, et al. Thermal conductivity model of filled polymer composites[J]. International Journal of Minerals, Metallurgy, and Materials,2011,18(5):623-631. doi: 10.1007/s12613-011-0487-9
    [20] ACARI Y, UEDA A, NACAI S. Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers[J]. Journal of Applied Polymer Science,1991,43(6):1117-1124. doi: 10.1002/app.1991.070430612
    [21] 周文英, 丁小卫. 导热高分子材料[M]. 北京: 国防工业出版社, 2014: 29.

    ZHOU Wenying, DING Xiaowei. Thermal conductive polymer materials[M]. Beijing: National Defense Industry Press, 2014: 29(in Chinese).
    [22] ACARI Y, UEDA A, NACAI S. Thermal conductivities of composites in several types of dispersion systems[J]. Journal of Applied Polymer Science,1991,42(6):1665-1669. doi: 10.1002/app.1991.070420621
    [23] WONG C P, BOLLAMPALLY R S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging[J]. Journal of Applied Polymer Science,1999,74(14):3396-3403.
    [24] GU J W, RUAN K. Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics[J]. Nano-Micro Letters,2021,13:110.
    [25] 任佳, 蔡静. 导热系数测量方法及应用综述[J]. 计测技术, 2018, 38(S1):46-49.

    REN Jia, CAI Jing. Summary of thermal conductivity measurement methods and applications[J]. Measurement Technology,2018,38(S1):46-49(in Chinese).
    [26] 张正荣. 传热学[M]. 北京: 高等教育出版社, 1982: 11-17.

    ZHANG Zhengrong. Heat transfer[M]. Beijing: Higher Education Press, 1982: 11-17(in Chinese).
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  215
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-03-20
  • 录用日期:  2023-03-27
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回