留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

取向碳化硅晶须硅橡胶复合材料导热性及绝缘性的研究

于天骄 宋伟 冯景涛 彭修峰 宋文宏

于天骄, 宋伟, 冯景涛, 等. 取向碳化硅晶须硅橡胶复合材料导热性及绝缘性的研究[J]. 复合材料学报, 2023, 41(0): 1-10
引用本文: 于天骄, 宋伟, 冯景涛, 等. 取向碳化硅晶须硅橡胶复合材料导热性及绝缘性的研究[J]. 复合材料学报, 2023, 41(0): 1-10
Tianjiao YU, Wei SONG, Jingtao FENG, Xiufeng PENG, Wenhong SONG. Research on thermal conductivity and insulation of oriented silicon carbide whisker silicone rubber composites[J]. Acta Materiae Compositae Sinica.
Citation: Tianjiao YU, Wei SONG, Jingtao FENG, Xiufeng PENG, Wenhong SONG. Research on thermal conductivity and insulation of oriented silicon carbide whisker silicone rubber composites[J]. Acta Materiae Compositae Sinica.

取向碳化硅晶须硅橡胶复合材料导热性及绝缘性的研究

基金项目: 国家自然科学基金 (51541702,51607048)
详细信息
    通讯作者:

    宋伟,博士,教授,博士生导师,研究方向为导热复合材料研发及绝缘材料改性研究 E-mail: sw7912@hrbust.edu.cn

  • 中图分类号: (TM211)

Research on thermal conductivity and insulation of oriented silicon carbide whisker silicone rubber composites

Funds: National Natural Science Foundation of China(51541702,51607048.)
  • 摘要: 优化热界面材料性能是解决设备散热问题有效途径之一,但基于“导热网理论”,导热网络的形成需要提高填料的含量,但含量较大时,势必会造成基体的绝缘性严重下降。为降低含量,本文提出了一种借助外磁场诱导填料取向来实现填料分布结构调控的方法,能在较低填量下快速实现导热路径的建立。以液体硅橡胶为基体,碳化硅晶须(SiCw)为填料,首先通过共沉淀法对SiCw进行四氧化三铁(Fe3O4)的包覆改性,将其均匀分散至液体硅橡胶中,并在稳恒磁场中固化,制备出SiCw取向结构的硅橡胶基导热复合材料。SiCw取向结构在基体中可以快速建立导热通路,达到降低填量含量的目的。通过COMSOL对SiCw随机分散与取向排列的硅橡胶复合材料进行模拟仿真,仿真结果表明,10wt%的SiCw可使硅橡胶导热系数提升60%,体积电阻率在1015 Ω∙cm以上,而10wt%取向SiCw可使硅橡胶导热系数提升170%,体积电阻率在1014 Ω∙cm以上,与纯硅橡胶相比下降两个数量级,但仍然具有良好的绝缘性能。仿真与实验数据对比表The comparison table of simulation results and experimental data
    Experimental dataSimulation results
    Name of sampleSIC10SIC10@FE10*SIC10SIC10@FE10*
    Thermal conductivity/(W/(m·K))0.1670.2350.2210.374
    Volume resistivity/Ω·cm3.71×10158.11×10144×10151×1014

     

  • 图  1  Fe3O4包覆SiCw的制备流程

    Figure  1.  The Preparation Process of Fe3O4 Coated SiCw

    图  2  硅橡胶复合材料制备流程

    Figure  2.  The Preparation Process of Silicone Rubber Composites

    图  3  XRD测试示意图

    Figure  3.  The schematic diagram of XRD test

    图  4  SiCw及FE@SIC (Fe3O4包覆SiCw)的SEM图

    Figure  4.  The SEM diagram of SiCw and FE@SIC (Fe3O4 coated SiCw)

    图  5  硅橡胶(SR)试样断面SEM图

    Figure  5.  The SEM diagram of silicone rubber (SR) section

    图  6  Fe3O4及FE@SIC的XRD图

    Figure  6.  The XRD diagram of Fe3O4 and FE@SIC

    图  7  FE@SIC10*的XRD图

    Figure  7.  The XRD diagram of FE@SIC10*

    图  8  SiCw/SR导热系数对数值线性拟合图

    Figure  8.  Linear fitting diagram of SiCw/SR thermal conductivity versus numerical value

    图  9  导热模型与SiCw/SR的导热系数折线图

    Figure  9.  Thermal conductivity model and thermal conductivity line chart of SiCw/SR

    图  10  SIC10、FE@SIC10*截面模拟图

    Figure  10.  The simulation diagram of SIC10, FE@SIC10* section

    图  11  FE@SIC10*与SIC10的几何仿真模型图

    Figure  11.  The geometric simulation model diagram of FE@SIC10* and SIC10

    图  12  几何模型在热场下的温度分布图

    Figure  12.  The temperature distribution diagram of geometric model under thermal field

    1  仿真与实验数据对比表

    1.   The comparison table of simulation results and experimental data

    Experimental dataSimulation results
    Name of sampleSIC10SIC10@FE10*SIC10SIC10@FE10*
    Thermal conductivity/(W/(m·K))0.1670.2350.2210.374
    Volume resistivity/Ω·cm3.71×10158.11×10144×10151×1014
    下载: 导出CSV

    表  1  试样编号明细表

    Table  1.   Specimen details

    Name of sampleDetailed description
    FE@SICFe3O4 coated SiCw
    SRPure silicone rubber sample
    SiCw /SRSiCw filled silicone rubber series samples
    SIC1010 wt% SiCw filled silicone rubber sample
    FE@SIC10*Magnetized sample of 10 wt% FE@SIC
    silicone rubber
    FE@SIC1010 wt% FE@SIC silicone rubber sample
    SICFE10*Magnetized sample of 10 wt%SiCw+Fe3O4
    silicone rubber
    下载: 导出CSV

    表  2  SiCw/SR的导热系数表

    Table  2.   The table of thermal conductivity of SiCw/SR

    SiCw/SR0 wt%5 wt%10 wt%15 wt%20 wt%
    Thermal conductivity/(W·(m·K)−1)0.1370.1480.1670.1810.236
    下载: 导出CSV

    表  3  FE@SIC10*导热系数对比表

    Table  3.   The comparison table of thermal conductivity of FE@SIC10*

    Name of sampleSRSIC10SICFE10*FE@SIC10FE@SIC10*
    Thermal conductivity/(W·(m·K)−1)0.1370.1670.1720.1680.235
    下载: 导出CSV

    表  4  SiCw/SR体积电阻率表

    Table  4.   The table of volume resistivity of SiCw/SR

    SiCw/SR0 wt%5 wt%10 wt%15 wt%20 wt%
    Volume resistivity/(Ω·cm)4×10167.84×10153.7×10155.6×10143.9×1014
    下载: 导出CSV

    表  5  FE@SIC10*体积电阻率对比表

    Table  5.   The comparison table of volume resistivity of FE@SIC10*

    Name of sampleSRSIC10FE@SIC10*
    Volume resistivity/(Ω·cm)4×10163.7×10158.1×1014
    下载: 导出CSV

    表  6  仿真与实验数据对比表

    Table  6.   The comparison table of simulation results and experimental data

    Experimental dataSimulation results
    Name of sampleSIC10SIC10@FE10*SIC10SIC10@FE10*
    Thermal conductivity/(W·(m·K)-1)0.1670.2350.2210.374
    Volume resistivity/(Ω·cm)3.71×10158.11×10144×10151×1014
    下载: 导出CSV
  • [1] FENG Changping, YANG Luyao, YANG Jie, et al. Recent advances in polymer-based thermal interface materials for thermal management: a mini-review[J]. Composites Communications,2020,22:1-10.
    [2] XUE Yang, WANG Haosheng, LI Xiaofei, et al. Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing[J]. Composites Part A:Applied Science and Manufacturing,2021,144:1-8.
    [3] ZHANG Li, DENG Hua, FU QIANG. Recent progress on thermal conductive and electrical insulating polymer composites[J]. Composites Communications,2018,8:74-82. doi: 10.1016/j.coco.2017.11.004
    [4] 周文英, 王蕴, 曹国政, 等. 本征导热高分子材料研究进展[J]. 复合材料学报, 2021, 38(7):2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001

    ZHOU Wenying, WANG Yun, CAO Guozheng, et al. Research progress of polymer materials with intrinsic heat conduction[J]. Journal of Composite Materials,2021,38(7):2038-2055(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210312.001
    [5] NIU Hongyu, REN Yanjuan, GUO Haichang, et al. Recent progress on thermally Conductive and electrical insulating rubber composites: design, processing and applications[J]. Composites Communications,2020,22(100430):1-12.
    [6] ZHANG Hao, ZHANG Xiaowen, FANG Zhou, et al. Recent advances in preparation, mechanisms, and applications of thermally conductive polymer composites: a review[J]. Journal of Composites Science,2020,4(4):180-226. doi: 10.3390/jcs4040180
    [7] VYSOTSKY V V. ROLDUGHIN V. I. Aggregate structure and percolation properties of metal-filled polymer films[J]. Colloids and Surfaces,1999,160(2):171-180. doi: 10.1016/S0927-7757(99)00355-6
    [8] 李宾, 刘妍, 孙斌, 等. 聚合物基导热复合材料的性能及导热机理[J]. 化工学报, 2009, 60(10):2650-2655.

    LI Bin, LIU Yan, SUN Bin, et al. Properties and thermal conductivity mechanism of polymer-based thermal conductivity composites[J]. Journal of Chemical Technology,2009,60(10):2650-2655(in Chinese).
    [9] YANG Xue, LI Xiaofei, WANG Haosheng, et al. Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites[J]. Materials & Design,2019,165:107580-107588.
    [10] XU Shuai, LIU Hui, LI Qiao mei, et al. Influence of magnetic alignment and layered structure of BN&Fe/EP on thermal conducting performance[J]. Journal of Materials Chemistry C,2016,4(4):872-878. doi: 10.1039/C5TC03791C
    [11] SONG Shiqiang, WANG Jinyuan, LIU Cheng, et al. A facile route to fabricate thermally conductive and electrically insulating polymer composites with 3 D interconnected graphene at an ultralow filler loading[J]. Nanoscale,2019,11(32):15234-15244. doi: 10.1039/C9NR05153H
    [12] 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7):3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001

    WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of Oriented Boron Nitride @ Polydopamine/Nano Silver Thermal Conductive Network and Its Silicone Rubber Composite Thermal Conductive Gasket by Ice Template Method[J]. Acta Composites,2022,39(7):3131-3143(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210906.001
    [13] MA H Q, GAO B, WANG M, et al. Vertical alignment of carbon fibers under magnetic field driving to enhance the thermal conductivity of silicone composites, Polymers for Advanced Technologies [J], 2021, 32(11): 4318-4325
    [14] 贾园, 马欢, 杨菊香, 等. 磁性四氧化三铁纳米粒子的制备及其应用研究进展[J]. 化学工业与工程, 2022: 1-12.

    JIA Yuan, MA Huan, YANG Juxiang, et al. Progress in preparation and application of magnetic Fe3 O4 nanoparticles [J]. Chemical Industry and Engineering, 2022: 1-12. (in Chinese)
    [15] 侯涛, 徐仁扣. 胶体颗粒表面双电层之间的相互作用研究进展[J]. 土壤, 2008, 40(3):377-381. doi: 10.3321/j.issn:0253-9829.2008.03.008

    HOU Tao, XU Renkou. Research progress on the interaction between electric double layers on the surface of colloidal particles[J]. Soil,2008,40(3):377-381(in Chinese). doi: 10.3321/j.issn:0253-9829.2008.03.008
    [16] T Merle Méjean, E Abdelmounm. P Quintard Quintard. Oxide layer on silicon carbide powder: A Ft-Ir investigation[J]. Journal of Molecular Structure 1995, 349(1): 105-108.
    [17] WANG Hongyu, BERTAAND Yolande, FISCHMAN Gary S. Microstructure of silicon carbide whiskers synthesized by carbothermal reduction of silicon nitride[J]. Journal of the American Ceramic Society,1992,75(5):1080-1084. doi: 10.1111/j.1151-2916.1992.tb05541.x
    [18] SHEN Mingxia, CUI Yinxin, HE Jing, et al. Thermal conductivity model of filled polymer composites[J]. International Journal of Minerals, Metallurgy, and Materials,2011,18(5):623-631. doi: 10.1007/s12613-011-0487-9
    [19] ACARI Y, UEDA A, NACAI S. Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers[J]. Journal of Applied Polymer Science,1991,43(6):1117-1124. doi: 10.1002/app.1991.070430612
    [20] 周文英, 丁小卫. 导热高分子材料[M]. 北京: 国防工业出版社, 2014: 29

    ZHOU Wenying, DING Xiaowei. Thermal Conductive Polymer Materials [M]. Beijing: National Defense Industry Press, 2014: 29. (in Chinese)
    [21] ACARI Y, UEDA A, NACAI S. Thermal conductivities of composites in several types of dispersion systems[J]. Journal of Applied Polymer Science,1991,42(6):1665-1669. doi: 10.1002/app.1991.070420621
    [22] WONG C P, S RAJA BOLLAMPALLY. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging[J]. Journal of Applied Polymer Science,1998,74:3396-3403.
    [23] GU Junwei. RUAN Kunpeng. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics[J]. Nanomicro Lett,2021,13(110):1-9.
    [24] 任佳, 蔡静. 导热系数测量方法及应用综述[J]. 计测技术, 2018, 38(S1):46-49.

    REN Jia, CAI Jing. Summary of thermal conductivity measurement methods and applications[J]. Measurement technology,2018,38(S1):46-49(in Chinese).
    [25] 张正荣. 传热学[M]. 北京市: 高等教育出版社, 1982: 1-17.

    ZHANG Zhengrong. H eat transfer [M]. Beijing: Higher Education Press, 1982: 11-17. (in Chinese)
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-03-20
  • 录用日期:  2023-03-27
  • 网络出版日期:  2023-04-10

目录

    /

    返回文章
    返回