Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film
-
摘要:
碳纤维增强树脂基复合材料具有轻质、高强度、高模量等优点,在航空航天领域得到广泛的应用,尤其在飞机的结构材料中占有极大的比重。但由于碳纤维增强树脂基复合材料电学性能差,在飞机遭受雷击时易造成严重破坏,影响飞行安全。现有的铜网雷击防护方案密度大、与碳纤维复合材料层结合较差,亟需开发一种轻质、高导电且与碳纤维复合材料层结合好的薄膜材料。碳纳米管薄膜金属化是制备轻质高导电材料的有效手段之一。本文采用电化学沉积法成功制备了一种具有纳米尺寸Cu晶粒部分填充于碳纳米管薄膜网络内部、上表面Cu富集、且下表面保留了碳纳米管薄膜多孔结构的轻质高导电金属化碳纳米管薄膜。该复合薄膜的电导率为2.16×107 S/m(Cu为5.7×107 S/m),比电导率为12 S·m2/g,是Cu的2倍(Cu的比电导率为6.36 S·m2/g),载流量为2.18×104 A/cm2,比载流量为12132 A·cm/g,分别为商用铜网的1.4倍和7倍,且具有较好的柔性。同时,复合薄膜中的碳纳米管可以有效抑制Cu在大载流作用下电迁移的发生,进而延长材料载流失效的时间,提高了材料的载流能力。基于CNT(碳纳米管)/Cu(铜)复合薄膜制备了CFRP雷击防护试样,进行人工模拟雷击试验及高精度损伤分析,评估雷击防护效果。与商用铜网雷击防护材料相比,CNT/Cu复合薄膜质量减轻61%,且表现出更为优异的雷击防护性能。 碳纤维增强树脂复合材料雷击防护示意图(a)和防护层CNT/Cu复合薄膜截面Cu分布示意图(b) Abstract: Due to the poor conductivity, carbon fiber reinforced resin matrix composites (CFRP) cannot meet the lightning strike protection requirement of aircrafts. The metallization of carbon nanotube (CNT) films are lightweight, and possess high conductivity and high current-carrying capacity, making them promising for lightning strike protection of composite materials. CNT/copper(Cu) composite films were successfully prepared by electrochemical deposition process, and its microstructure, electrical properties and current-carrying failure behavior were characterized and analyzed. The results showed that CNT/Cu composite films were flexible and had gradient microstructures, where the content of Cu gradually decreased from one side to another. The electrical conductivity of the composite films was 2.16×107 S/m, and their specific conductivity was 2 times of pure Cu, and the current carrying capacity and specific current carrying capacity were 1.4 times and 7 times of copper mesh, respectively. CNTs in the composite film can inhibit the electromigration of Cu, thus prolonging its current-carrying failure time. CFRPs for lightning strike protection testing were prepared by using CNT/Cu composite films, and the lightning strike protection performance was evaluated by artificial simulation lightning test and damage analysis. Compared with copper mesh, CNT/Cu composite films were 61% lighter and showed more excellent lightning protection performance. -
图 3 (a)电化学沉积法制备的碳纳米管(CNT)/铜(Cu)复合薄膜试样;(b)(c) CNT/Cu复合薄膜上表面及下表面SEM微观形貌图;(d)(e)复合薄膜截面微观形貌及对应EDS元素表征;(f)复合薄膜截面Cu元素分布示意图
Figure 3. (a) Carbon nanotube (CNT)/copper(Cu) composite film sample prepared by electrochemical deposition;(b)(c) Micromorphology of upper and lower surfaces of CNT/Cu composite film by SEM;(d)(e) Micromorphology of CNT/Cu composite film section and its elemental analysis by EDS;(f) Schematic diagram of Cu element distribution of composite film section
图 7 CNT/Cu复合薄膜载流失效断口形貌及元素分析:(a)(b)复合薄膜断口处SEM图;(c)(d)图(b)中对应位置元素线扫描及面扫描结果
Figure 7. Fracture morphology and elemental analysis of current carrying failure of CNT/Cu composite films: (a)(b) SEM image of composite film fracture; (c)(d) Line scan and map scan results of corresponding position elements in Figure (b)
图 8 CFRP试样截面形貌及界面形态:(a)(d)(g) Cu mesh-CFRP;(b)(e)(h) MS CNT/Cu-CFRP;(c)(f)(i) EP CNT/Cu-CFRP
由上至下分别为3 D共聚焦显微图,金相图,SEM图
Figure 8. Section morphology and interface morphology of CFRP samples:(a)(d)(g) Cu mesh-CFRP;(b)(e)(h) MS CNT/Cu-CFRP;(c)(f)(i) EP CNT/Cu-CFRP.
From top to bottom are 3 D confocal micrograph, metallographic diagram, scanning electron micrograph.
图 11 试样雷击试验后CT扫描整体形貌:(a) NP-CFRP;(b) Cu mesh-CFRP;(c) MS CNT/Cu-CFRP;(d) EP CNT/Cu-CFRP;和随深度变化10%、20%、40%的剖面损伤形貌: (a1)-(a3) NP-CFRP;(b1)-(b3) Cu mesh-CFRP;(c1)-(c3) MS CNT/Cu-CFRP;(d1)-(d3) EP CNT/Cu-CFRP
Figure 11. CT scanning of samples overall damage morphology after lightning strike test:(a) NP-CFRP ; (b) Cu mesh-CFRP ; (c) MS CNT/Cu-CFRP;(d) EP CNT/Cu-CFRP; and profile damage morphology varies by 10%, 20% and 40% with depth.(a1)-(a3) NP-CFRP; (b1)-(b3) Cu mesh-CFRP; (c1)-(c3) MS CNT/Cu-CFRP; (d1)-(d2) EP CNT/Cu-CFRP
表 1 商用铜网参数
Table 1. Commercial copper mesh parameters
Project Parameter Long intercept 2.54 mm±5% Short intercept 1.40 mm±6% Areal density 245±20 g/m2 Long intercept direction resistance ≤2.10 mΩ Short intercept direction resistance ≤6.30 mΩ 表 2 雷击防护CFRP试样电导率测试结果
Table 2. Conductivity test results of CFRP samples for lightning strike protection
Direction Samples Conductivity/(S·m−1) X NP-CFRP 23.14±3.47 Cu mesh-CFRP 31.02±2.88 MS CNT/Cu-CFRP 55.82±6.55 EP CNT/Cu-CFRP 99.81±7.13 Y NP-CFRP 8.57±0.61 Cu mesh-CFRP 19.62±2.36 MS CNT/Cu-CFRP 32.19±2.66 EP CNT/Cu-CFRP 62.87±9.47 Z NP-CFRP 0.79±0.06 Cu mesh-CFRP 1.30±0.07 MS CNT/Cu-CFRP 1.65±0.25 EP CNT/Cu-CFRP 2.38±0.35 表 3 四组CFRP试样雷击测试后损伤深度分析
Table 3. Analysis of damage depth of four groups of CFRP samples after lightning strike test
Samples Total thickness/mm Protective layer thickness/mm Total damage thickness/mm Total damage rate/% Damage rate of carbon
fiber structural layer/%NP-CFRP 3.837 0 1.456 37.95% 37.95% Cu mesh-CFRP 4.372 0.218 0.671 15.35% 10.91% MS CNT/Cu-CFRP 3.870 0.055 0.370 9.56% 8.26% EP CNT/Cu-CFRP 3.850 0.050 0.050 1.30% 0% -
[1] SOULAS F, ESPINOSA C, LACHAUD F, et al. A method to replace lightning strike tests by ball impacts in the design process of lightweight composite aircraft panels[J] International Journal of Impact Engineering, 2018, 111: 165-176. [2] GIURGIUTIU, VICTOR. Structural health monitoring of aerospace composites[M]. 2016, 1-23. [3] GUO Y L, XU Y, WANG Q, et al. Eliminating lightning strike damage to carbon fiber composite structures in Zone 2 of aircraft by Ni-coated carbon fiber nonwoven veils[J]. Composites Science and Technology,2019,169:95-102. doi: 10.1016/j.compscitech.2018.11.011 [4] UMAN M A, RAKOV V A. The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences,2003,39(1):61-81. doi: 10.1016/S0376-0421(02)00051-9 [5] GAGNE M, THERRIAULT D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences,2014,64:1-16. doi: 10.1016/j.paerosci.2013.07.002 [6] WANG F S, DING N, LIU Z Q, et al. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike[J]. Composite Structures,2014,117:222-233. doi: 10.1016/j.compstruct.2014.06.029 [7] DONG Q, GUO Y, SUN X, et al. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike[J]. Polymer,2015,56:385-394. doi: 10.1016/j.polymer.2014.11.029 [8] CHEN H, WANG F S, MA X T, et al. The coupling mechanism and damage prediction of carbon fiber/epoxy composites exposed to lightning current[J]. Composite Structures,2018,203:436-445. doi: 10.1016/j.compstruct.2018.07.017 [9] WANG B, ZHU Y, MING Y, et al. Understanding lightning strike induced damage mechanism of carbon fiber reinforced polymer composites: An experimental study[J]. Materials & Design,2020,192:108724. [10] ZHAO Z J, XIAN G J, YU J G, et al. Development of electrically conductive structural BMI based CFRPs for lightning strike protection[J]. Composites Science and Technology,2018,167:555-562. doi: 10.1016/j.compscitech.2018.08.026 [11] KUMAR, VIPIN, YOKOZEKI, et al. Factors affecting direct lightning strike damage to fiber reinforced composites: A review[J]. Composites Part B:Engineering,2020,183:107688. doi: 10.1016/j.compositesb.2019.107688 [12] IIJIMA, SUMIO. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0 [13] ZHANG S, NGUYEN N, LEONHARDT B, et al. Carbon-Nanotube-Based Electrical Conductors: Fabrication, Optimization, and Applications[J]. Advanced Electronic Materials,2019,5(6):1800811. doi: 10.1002/aelm.201800811 [14] DYDEK K, BOCZKOWSKA A, KOZERA R, et al. Effect of SWCNT-tuball paper on the lightning strike protection of CFRPs and their selected mechanical properties[J]. Materials,2021,14(11):3140. doi: 10.3390/ma14113140 [15] ZHANG J, ZHANG X, CHENG X, et al. Lightning strike damage on the composite laminates with carbon nanotube films: Protection effect and damage mechanism[J]. Composites Part B:Engineering,2019,168:342-352. doi: 10.1016/j.compositesb.2019.03.054 [16] ARAI S. Fabrication of Metal/Carbon Nanotube Composites by Electrochemical Deposition[J]. Electrochem,2021,2(4):563-589. doi: 10.3390/electrochem2040036 [17] SUBRAMANIAM C, YAMADA T, KOBASHI, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J]. Nat Commun,2013,4:2202. doi: 10.1038/ncomms3202 [18] LEGGIERO A P, TRETTNER K J, URSINO H L, et al. High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition[J]. ACS Applied Nano Materials,2018,2(1):118-126. [19] BAZBOUZ M B, AZIZ A, COPIC D, et al. Fabrication of high specific electrical conductivity and high ampacity carbon nanotube/copper composite wires[J]. Advanced Electronic Materials,2021,7(4):2001213. doi: 10.1002/aelm.202001213 [20] SUNDARAM R M, YAMADA T, HATA K, et al. The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires[J]. Materials Today Communications,2017,13:119-125. doi: 10.1016/j.mtcomm.2017.09.003 [21] SUNDARAM R M, YAMADA T, HATA K, et al. Electrical performance of lightweight CNT-Cu composite wires impacted by surface and internal Cu spatial distribution[J]. Sci Rep,2017,7(1):9267. doi: 10.1038/s41598-017-09279-x [22] SUNDARAM R, SEKIGUCHI A, SEKIYA M, et al. Copper/carbon nanotube composites: research trends and outlook[J]. R Soc Open Sci,2018,5(11):180814. doi: 10.1098/rsos.180814 [23] 郭妙才, 黑艳伟, 李斌太等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9):4354-4365.GUO M C, HEI Y W, LI B T, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica,2022,39(9):4354-4365(in Chinese). [24] Society of Automotive Engineers. SAE ARP 5416 A Aircraft Lightning Test Methods[S]. America: Society of Automotive Engineers International, 2013. DOI: https://doi.org/10.4271/ARP5416A. [25] Society of Automotive Engineers. SAE ARP 5412 B Aircraft Lightning Environment and Related Test Waveforms[S]. America: Society of Automotive Engineers International, 2013. DOI: https://doi.org/10.4271/ARP5412B. [26] HYUN-JUN, HWANG, SUNG-JUN, et al. Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering[J]. ACS Appl Mater Interfaces,2015,7(45):25413-23. doi: 10.1021/acsami.5b08112 [27] HUANG Y Y, TERENTJEV E M. Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties[J]. Polymers,2012,4(1):275-295. doi: 10.3390/polym4010275 -

计量
- 文章访问数: 85
- HTML全文浏览量: 38
- 被引次数: 0