留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯对水泥基复合材料徐变的调控机制

徐亦冬 王瑶

徐亦冬, 王瑶. 氧化石墨烯对水泥基复合材料徐变的调控机制[J]. 复合材料学报, 2021, 39(0): 1-8
引用本文: 徐亦冬, 王瑶. 氧化石墨烯对水泥基复合材料徐变的调控机制[J]. 复合材料学报, 2021, 39(0): 1-8
Yidong XU, Yao WANG. Regulation mechanism of graphene oxide on creep of cement-based composites[J]. Acta Materiae Compositae Sinica.
Citation: Yidong XU, Yao WANG. Regulation mechanism of graphene oxide on creep of cement-based composites[J]. Acta Materiae Compositae Sinica.

氧化石墨烯对水泥基复合材料徐变的调控机制

基金项目: 国家自然科学基金(51778577);浙江省建设科技项目(2020K063)
详细信息
    通讯作者:

    徐亦冬,博士,教授,硕士生导师,研究方向为先进土木工程材料 E-mail:xyd@nbt.edu.cn

  • 中图分类号: TU525

Regulation mechanism of graphene oxide on creep of cement-based composites

  • 摘要: 为了探明氧化石墨烯(GO)对水泥基复合材料徐变的调控机制,采用徐变加载架对不同GO掺量水泥胶砂的徐变进行了测试,并从水泥基复合材料的水化和微观结构入手,采用SEM、XRD、FTIR等研究了GO对水泥胶砂徐变的影响,并对调控机制进行了解释。结果表明:GO可以调节水泥基复合材料水化产物的形状与聚集态,降低宏观徐变。当GO掺量(与水泥质量比)大于0.02%时,水泥胶砂的徐变大幅度降低。GO的掺入促进了水化硅酸钙(CSH)对水分子的吸附与扩散,增加了内部CSH含量,使水化产物的结构更加致密。GO与CSH形成的氢键可提升二者之间的黏结力,并增强水分子在CSH-GO片层间的吸附,从而实现了对水泥胶砂徐变的调控。研究成果对于实现按终端用途进行水泥基复合材料设计具有重要的理论价值,并有望在预应力混凝土结构中得到应用。

     

  • 图  1  GO分散液

    Figure  1.  GO dispersion

    图  2  弹簧式加载架

    Figure  2.  Spring loading frame

    图  3  不同GO掺量水泥胶砂的收缩应变

    Figure  3.  Shrinkage strain of mortar with different GO contents

    图  4  不同GO掺量水泥胶砂的徐变度

    Figure  4.  Creep degree of mortar with different GO contents

    图  5  GO增强水泥基复合材料的微观结构

    Figure  5.  Microstructures of GO reinforced cement-based composites

    图  6  GO增强水泥基复合材料的XRD曲线:(a) 5°~90°;(b) 15°~25°

    Figure  6.  XRD curves of GO reinforced cement-based composites: (a) 5-90°;(b) 15°-25°

    图  7  GO增强水泥基复合材料的红外光谱曲线

    Figure  7.  Infrared spectra of GO reinforced cement-based composites

    表  1  氧化石墨烯(GO)的指标

    Table  1.   Properties of graphene oxide (GO)

    MorphologyOxygen content/
    %
    Lamellar diameter/
    μm
    Layers
    Earthy brown powder>450.2-101-2
    下载: 导出CSV

    表  2  聚羧酸减水剂(PCs)的指标

    Table  2.   Properties of polycarboxylic acid superplasticizer (PCs)

    MorphologypHSolubilitySolid content/%Corrosive
    Light yellow liquid7-9Soluble in water20Non-corrosive
    下载: 导出CSV

    表  3  胶砂试件配合比

    Table  3.   Mix proportion of mortar specimen

    IDCement/
    g
    Standard
    sand/g
    Water/
    g
    PCs/
    g
    GO/
    g
    Cement450135022500
    0.01%GO/Cement224.80.250.045
    0.02%GO/Cement224.210.090
    0.03%GO/Cement2241.250.135
    下载: 导出CSV
  • [1] MALLICK S, ANOOP M B, RAO K B. Creep of cement paste containing fly ash-an investigation using microindentation technique[J]. Cement and Concrete Research,2019,121:21-36. doi: 10.1016/j.cemconres.2019.04.006
    [2] HUMAD A M, PROVIS J L, HABERMEHL-CWIRZEN K, et al. Creep and Long-Term Properties of Alkali-Activated Swedish-Slag Concrete[J]. Journal of Materials in Civil Engineering,2021,33(2):04020475. doi: 10.1061/(ASCE)MT.1943-5533.0003381
    [3] SIRTOLI D, WYRZYKOWSKI M, RIVA P, et al. Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement[J]. Cement and Concrete Composites,2019,98:61-73. doi: 10.1016/j.cemconcomp.2019.02.006
    [4] 王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维/水泥复合材料徐变性能试验[J]. 复合材料学报. 2020, 37(1): 205-213.

    WANG Y Q, SUN L, LIU S G, et al. Experimental study on creep performance of polyvinyl alcohol fiber/engineered cementitious composite with different fiber contents[J]. Acta Materiae Composites Sinica. 2020, 37(1): 205-213. (In Chinese)
    [5] HU Z, HILAIRE A, STON J, et al. Intrinsic viscoelasticity of CSH assessed from basic creep of cement pastes[J]. Cement and Concrete Research,2019,121:11-20. doi: 10.1016/j.cemconres.2019.04.003
    [6] JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cement and concrete research,2000,30(1):101-116. doi: 10.1016/S0008-8846(99)00209-4
    [7] THOMAS J J, JENNINGS H M. A colloidal interpretation of chemical aging of the CSH gel and its effects on the properties of cement paste[J]. Cement and concrete research,2006,36(1):30-38. doi: 10.1016/j.cemconres.2004.10.022
    [8] JENNINGS H M. Refinements to colloid model of CSH in cement: CM-II[J]. Cement and Concrete Research,2008,38(3):275-289. doi: 10.1016/j.cemconres.2007.10.006
    [9] WYRZYKOWSKI M, SCRIVENER K, LURA P. Basic creep of cement paste at early age-the role of cement hydration[J]. Cement and Concrete Research,2019,116:191-201. doi: 10.1016/j.cemconres.2018.11.013
    [10] MALLICK S, ANOOP M B, RAO K B. Early age creep of cement paste-Governing mechanisms and role of water-A microindentation study[J]. Cement and Concrete Research,2019,116:284-298. doi: 10.1016/j.cemconres.2018.12.004
    [11] ZHAO L, GUO X, LIU Y, et al. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites[J]. Construction and Building Materials,2018,190:150-163. doi: 10.1016/j.conbuildmat.2018.09.105
    [12] INDUKURI C S R, NERELLA R. Enhanced transport properties of graphene oxide based cement composite material[J]. Journal of Building Engineering,2021,37:102174. doi: 10.1016/j.jobe.2021.102174
    [13] ANWAR A, MOHAMMED B S, WAHAB M A, et al. Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial-A review[J]. Developments in the Built Environment,2020,1:100002. doi: 10.1016/j.dibe.2019.100002
    [14] 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2): 339-360.

    CHENG Z H, YANG S, YUAN X Y. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Composites Sinica. 2021, 38(2): 339-360. (In Chinese)
    [15] WEI Z, WANG Y, QI M, et al. The role of sucrose on enhancing properties of graphene oxide reinforced cement composites containing fly ash[J]. Construction and Building Materials,2021,293:123507. doi: 10.1016/j.conbuildmat.2021.123507
    [16] LV S H, DENG L J, YANG W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cement and Concrete Composites,2016,66:1-9. doi: 10.1016/j.cemconcomp.2015.11.007
    [17] LV S, MA Y, QIU C, et al. Regulation of GO on cement hydration crystals and its toughening effect[J]. Magazine of Concrete Research,2013,65(20):1246-1254. doi: 10.1680/macr.13.00190
    [18] 雷斌, 邹俊, 饶春华, 等. 氧化石墨烯对再生混凝土改性试验研究[J]. 建筑结构学报. 2016, 37(S2): 103-108.

    LEI B, ZOU J, RAO C H, et al. Experimental study on modification of recycled concrete with graphene oxide[J]. Journal of Building Structures. 2016, 37(S2): 103-108. (In Chinese)
    [19] INDUKURI C S R, NERELLA R, MADDURU S R C. Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites[J]. Construction and Building Materials,2019,229:116863. doi: 10.1016/j.conbuildmat.2019.116863
    [20] PENG H, GE Y, CAI C S, et al. Mechanical properties and microstructure of graphene oxide cement-based composites[J]. Construction and Building Materials,2019,194:102-109. doi: 10.1016/j.conbuildmat.2018.10.234
    [21] LI X, WEI W, QIN H, et al. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement[J]. Journal of Physics and Chemistry of Solids,2015,85:39-43. doi: 10.1016/j.jpcs.2015.04.018
    [22] LU Z, YU J, YAO J, et al. Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J]. Cement and Concrete Composites,2020,112:103676. doi: 10.1016/j.cemconcomp.2020.103676
    [23] DU S, TANG Z, ZHONG J, et al. Effect of admixing graphene oxide on abrasion resistance of ordinary portland cement concrete[J]. AIP Advances,2019,9(10):105110. doi: 10.1063/1.5124388
    [24] 王琴, 李时雨, 王健, 等. 氧化石墨烯对水泥水化进程及其主要水化产物的影响[J]. 硅酸盐学报, 2018, 46(2): 163-172.

    WANG Q, LI S Y, WANG J, et al. Effect of graphene oxide on hydration process and main hydration products of cement[J]. Journal of The Chinese Ceramic Society. 2018, 46(2): 163-172. (In Chinese)
    [25] LIN C, WEI W, HU Y H. Catalytic behavior of graphene oxide for cement hydration process[J]. Journal of Physics and Chemistry of Solids,2016,89:128-133. doi: 10.1016/j.jpcs.2015.11.002
    [26] CHEN Z, XU Y, HUA J, et al. Modeling shrinkage and creep for concrete with graphene oxide nanosheets[J]. Materials,2019,12(19):3153. doi: 10.3390/ma12193153
    [27] CHUAH S, LI W, CHEN S J, et al. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments[J]. Construction and Building Materials,2018,161:519-527. doi: 10.1016/j.conbuildmat.2017.11.154
    [28] 赵庆新, 佟建楠, 孔才华, 等. 水泥净浆-砂浆-混凝土的徐变相关性[J]. 燕山大学学报. 2014, 38(1): 66-71.

    ZHAO Q X, TONG J N, KONG C H, et al. Creep correlation of cement paste, mortar and concrete[J]. Journal of Yanshan University, 2014, 38(01): 66-71. (In Chinese)
    [29] 国家技术质量监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17671-1999 [S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision. Method of testing cements—Determination of strength: GB/T 17671-1999 [S]. Beijing: China Quality and Standards Publishing & Media Co. , Ltd, 1999. (In Chinese)
    [30] 曾鞠庆, 徐亦冬, 潘志宏, 等. 氧化石墨烯水泥基复合材料的流动性、力学性能及其作用机理探究[J]. 江苏科技大学学报(自然科学版). 2019, 33(3): 126-130.

    ZENG J Q, XU Y D, PAN Z H, et al. Preparation and mechanism of graphite oxide reinforced cement based composites[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition). 2019, 33(3): 126-130. (In Chinese)
    [31] 王瑶, 徐亦冬, 曾鞠庆, 等. 氧化石墨烯对水泥基复合材料自收缩的影响[J]. 功能材料. 2020, 51(3): 3108-3113.

    WANG Y, XU Y D, ZENG J Q, et al. Influence of graphene oxide on autogenous shrinkage of cement-based composites[J]. Journal of Functional Materials. 2020, 51(3): 3108-3113. (In Chinese)
    [32] 黄国兴, 惠荣炎, 王秀军, 等. 混凝土徐变与收缩[M]. 北京: 中国电力出版社. 2012.

    HUANG G X, HUI R Y, WANG X J, et al. Creep and shrinkage of concrete[M]. Beijing: China Electric Power Press. 2012. (In Chinese)
    [33] 林宗寿, 邢伟宏, 陈伟, 等. 胶凝材料学[M]. 武汉: 武汉理工大学出版社, 2018.

    LIN Z S, XING W H, CHEN W, et al. Cementitious materials science[M]. Wuhan: Wuhan University of Technology Press, 2018. (In Chinese)
  • 加载中
计量
  • 文章访问数:  155
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 录用日期:  2021-10-24
  • 修回日期:  2021-10-10
  • 网络出版日期:  2021-11-23

目录

    /

    返回文章
    返回