留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强碳基复合材料加工技术研究与探讨

翟兆阳 曲雅静 张延超 吴宁强 尹明虎 张东亚

翟兆阳, 曲雅静, 张延超, 等. 碳纤维增强碳基复合材料加工技术研究与探讨[J]. 复合材料学报, 2022, 39(5): 2014-2033. doi: 10.13801/j.cnki.fhclxb.20211106.001
引用本文: 翟兆阳, 曲雅静, 张延超, 等. 碳纤维增强碳基复合材料加工技术研究与探讨[J]. 复合材料学报, 2022, 39(5): 2014-2033. doi: 10.13801/j.cnki.fhclxb.20211106.001
ZHAI Zhaoyang, QU Yajing, ZHANG Yanchao, et al. Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2014-2033. doi: 10.13801/j.cnki.fhclxb.20211106.001
Citation: ZHAI Zhaoyang, QU Yajing, ZHANG Yanchao, et al. Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2014-2033. doi: 10.13801/j.cnki.fhclxb.20211106.001

碳纤维增强碳基复合材料加工技术研究与探讨

doi: 10.13801/j.cnki.fhclxb.20211106.001
基金项目: 国家自然科学基金(51905425; 52075436);中国博士后科学基金(2021T140552; 2019M663939XB);机械制造系统工程国家重点实验室开放课题(sklms2020009)
详细信息
    通讯作者:

    张延超,博士,教授,博士生导师,研究方向为航空发动机密封件设计、加工及测试技术 E-mail: zhangyanchao@xaut.edu.cn

  • 中图分类号: TN249

Research and discussion on processing technology of carbon fiber reinforced carbon matrix composites

  • 摘要: 碳纤维增强碳基复合材料(C/C)具有热膨胀系数低、耐腐蚀、抗热冲击、耐磨损等特点,在武器装备、航空航天、汽车制造等领域得到日益广泛的应用。传统加工技术难以实现对C/C复合材料的高精度加工。激光加工技术对加工对象的尺寸、材质和形状要求低,易与其他先进加工技术相结合,具有其他加工方法所不具备的优势。本论文主要对C/C复合材料的制备、应用和加工方式进行了论述,详细阐述了激光加工C/C复合材料的原理机制和工艺特点,以及不同应用场合下加工工艺的选择策略。通过传统加工方法和特种加工方法的对比,概述了加工C/C复合材料所面临的问题和挑战,提出了C/C复合材料激光加工与其他先进制造技术相结合的发展趋势。

     

  • 图  1  碳纤维增强碳基复合材料 (C/C) 示意图:(a) 三维建模[6];(b) 断层形貌[7]

    Figure  1.  Schematic diagram of carbon fiber reinforced carbon matrix composites (C/C): (a) Three-dimensional modeling[6]; (b) Fault morphology[7]

    图  2  C/C复合材料致密化工艺流程图[4]:(a) 液体浸渍-碳化工艺;(b) 化学气相沉积/化学气相渗透 (CVD/CVI) 工艺

    Figure  2.  Densification process diagram of C/C composite[4]: (a) Liquid impregnation-carbonization process; (b) Chemical vapor deposition/chemical vapor infiltration (CVD/CVI) process

    图  3  C/C复合材料预制体 1#~5# ((a)~(e)) 的微观结构图[16]

    Figure  3.  Microstructure of C/C composite preform 1#~5# ((a)-(e))[16]

    图  4  C/C复合材料应用示例[23]:(a) 齿轮;(b) 复杂零件

    Figure  4.  Application example of C/C composites[23]: (a) Gear; (b) Complex parts

    图  5  C/C复合材料构件:(a) 飞机制动装置;(b) 刹车盘;(c) 指尖密封[26]

    Figure  5.  C/C composite components: (a) Aircraft brake device; (b) Brake disc; (c) Finger seal[26]

    图  6  车削加工形貌图[31]:(a) 普通车削;(b) 超声振动辅助车削

    Figure  6.  Surface morphology of turning[31]: (a) Ordinary turning; (b) Ultrasonic vibration-assisted turning

    图  7  钻削加工示意图和形貌图[32]:(a) 钻削加工;(b) 毛刺;(c) 局部放大

    Figure  7.  Schematic and morphology images of drilling [32]: (a) Drilling process; (b) Fin; (c) Partial enlargement

    图  8  线切割加工形貌图[31]:(a) 线切割;(b) 砂线切割

    Figure  8.  Morphology images of wire cutting[31]: (a) Wire cutting; (b) Wire sawing

    图  9  水射流加工形貌图[41]:(a) 材料分层;(b) 纤维撕裂

    Figure  9.  Morphology images of water jet machining[41]: (a) Delamination; (b) Fiber tearing

    图  10  电火花加工碳纤维增强复合材料形貌图[43]:(a) 表面形貌;(b) 分层形貌;(c) 重铸层

    Figure  10.  Morphology images of carbon fiber reinforced composite by electrical discharge machining[43]: (a) Surface; (b) Delamination; (c) Recast layer

    d—Maximum diameter of the damage zone; dmax—Hole diameter

    图  11  不同脉冲宽度激光与纤维增强复合材料的作用机制[44]

    Figure  11.  Mechanism of interaction between fiber reinforced composites and laser with different pulse width[44]

    CMC—Ceramic matrix composite

    图  12  夹角为0° (a)、45°(b)和90°(c) 时ANSYS的仿真结果[45]

    Figure  12.  Simulation results of ANSYS with included angle of 0° (a), 45° (b) and 90° (c)[45]

    图  13  COMSOL仿真结果[46]:(a) 烧蚀100秒温度分布;(b) 形态变化区温度分布;(c) 加工形貌

    Figure  13.  Results of COMSOL simulation[46]: (a) Temperature distribution of ablation after 100 seconds; (b) Temperature distribution in morphological change zone; (c) Processing morphology

    图  14  C/C复合材料仿真结果对比[47]:(a) 离焦状态;(b) 聚焦状态

    Figure  14.  Comparison of simulation results of C/C composite[47]: (a) Defocus state; (b) Focus state

    图  15  C/C复合材料表面烧蚀形貌图[46]:(a) 激光烧蚀前;(b) 激光烧蚀100 s后;(c) 局部放大

    Figure  15.  Surface ablation morphology of C/C composites[46]: (a) Before laser ablation; (b) After 100 s of laser ablation ; (c) Partial enlargement

    图  16  微观形貌SEM图像[55]:(a) 圆形端部海绵状结构;(b) 二维有序椎体

    Figure  16.  SEM images of microstructure[55]: (a) Circular end spongy structure; (b) Two dimensions ordered vertebral morphology

    图  17  不同激光功率加工C/C复合材料的SEM图像[56]

    Figure  17.  SEM images of C/C composites processed by different laser power[56]

    图  18  速度250 mm/s、功率1600 W时不同扫描次数时微槽形貌SEM图像对比[64]: (a) 扫描5次; (b) 扫描10次

    Figure  18.  SEM images comparison of micro groove morphology under different scanning times at the speed of 250 mm/s and power of 1600 W[64]: (a) Scanning for 5 times; (b) Scanning for 10 times

    MEW—Matrix evaporation width; MRW—Matrix recession width; A, B—Thermal damage is more prominent in the region where the fibers are aligned perpendicular to the laser scanning direction

    图  19  多级同心圆结构[65]:((a)~(c)) 离焦量;((d)~(f)) 激光功率;((g)~(i)) 脉冲数

    Figure  19.  Multi-layer circular structure[65]: ((a)-(c)) Defocusing distance; ((d)-(f)) Laser power; ((g)-(i)) Number of pulses

    图  20  飞秒激光加工碳纤维增强复合材料的表面形貌图[72]: ((a)~(c)) 功率为1 W,扫描次数分别为1、3、5次; ((d)~(f)) 功率为0.5 W,扫描次数分别为1、3、5次

    Figure  20.  Surface morphology of carbon fiber reinforced composites processed by femtosecond laser[72]: ((a)-(c)) Number of scanning is 1, 3, 5 times under 1 W power respectively; ((d)-(f)) Number of scanning is 1, 3, 5 times under 0.5 W power respectively

    图  21  飞秒激光加工碳纤维增强复合材料内部形貌图[74]: ((a)~(c)) 功率为1 W,离焦量分别为0、10、50 μm; ((d), (e)) 局部放大

    Figure  21.  Internal morphology of carbon fiber reinforced composites processed by femtosecond laser[74]: ((a)-(c)) Defocus distance is 0, 10, 50 μm under 1 W power respectively; ((d), (e)) Partial enlargement

  • [1] 李崇俊, 马伯信, 金志浩. 碳/碳复合材料的新发展[J]. 材料科学与工程学报, 1999, 18(3): 135-140.

    LI Chongjun, MA Boxin, JIN Zhihao. Recent developments of carbon-carbon composites[J]. Materials Science & Engineering, 1999, 18(3): 135-140(in Chinese).
    [2] GOLECKI I, XUE L, LEUNG R, et al. Properties of high thermal conductivity carbon-carbon composites for thermal management applications[C]. USA: 1998 High-Temperature Electronic Materials, Devices and Sensors Conference, 1998: 190-195.
    [3] 陈洁, 熊翔, 肖鹏. 高导热C/C复合材料的研究进展[J]. 材料导报, 2006(S2): 431-435.

    CHEN Jie, XIONG Xiang, XIAO Peng. Research and development of high-thermal conductivity carbon/carbon composites[J]. Materials Reports, 2006(S2): 431-435(in Chinese).
    [4] KUMAR C V, KANDASUBRAMANIAN B. Advances in ablative composites of carbon based materials: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22663-22701.
    [5] 解齐颖, 张祎, 朱阳, 等. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.

    XIE Qiying, ZHANG Wei, ZHU Yang, et al. Ultra-high temperature ceramics modified carbon/carbon composites[J]. Journal of Materials Engineering, 2021, 49(7): 46-55(in Chinese).
    [6] ALGHAMDI A, MUMMERY P, SHEIKH M A. Multi-scale 3D image-based modelling of a carbon/carbon composite[J]. Modelling and Simulation in Materials Science and Engi-neering, 2013, 21(8): 1-13.
    [7] ALGHAMDI A, KHAN A, MUMMERY P, et al. The characterisation and modelling of manufacturing porosity of a 2D carbon/carbon composite[J]. Journal of Composite Materials, 2014, 48(23): 2815-2829.
    [8] CHOWDHURY P, SEHITOGLU H, RATEICK R. Damage tolerance of carbon-carbon composites in aerospace application[J]. Carbon, 2018, 126: 382-393.
    [9] 张登科, 王光辉, 方登科, 等. 碳纤维增强树脂基复合材料的应用研究进展[J]. 化工新型材料, 2021, 50(1): 1-5.

    ZHANG Dengke, WANG Guanghui, FANG Dengke, et al. Progress in application and research of carbon fiber reinforced resin matrix composites[J]. New Chemical Materials, 2021, 50(1): 1-5(in Chinese).
    [10] 季根顺, 王丽, 贾建刚, 等. CVI法制备C/C复合材料的温度梯度[J]. 兰州理工大学学报, 2018, 44(1): 17-20.

    JI Genshun, WANG Li, JIA Jiangang, et al. The temperature gradient in preparation of C/C composites with CVI method[J]. Journal of Lanzhou University of Technology, 2018, 44(1): 17-20(in Chinese).
    [11] WINDHORST T, GORDON B. Carbon-carbon composites: A summary of recent developments and applications[J]. Materials & Design, 1997, 18(1): 11-15.
    [12] 张哲, 赵鹏, 孙国栋, 等. 酚醛树脂溶液浓度对液相浸渍-碳化法制备C/C复合材料浸渍效率的影响[J]. 固体火箭技术, 2019, 42(6): 771-778.

    ZHANG Zhe, ZHAO Peng, SUN Guodong, et al. Effect of concentration of phenolic resin on impregnation efficiency of carbon/carbon composites prepared by liquidimpregnation-carbonization method[J]. Journal of Solid Rocket Technology, 2019, 42(6): 771-778(in Chinese).
    [13] 李铁虎, 杨峥, 郑修麟, 等. 用改进的低压渍浸碳化法制备C/C复合材料的工艺研究[J]. 西北工业大学学报, 1994, 12(2): 155-158.

    LI Tiehu, YANG Zheng, ZHENG Xiulin, et al. Laboratory production of carbon/carbon composite by improved lpic[J]. Journal of Northwestern Polytechnical University, 1994, 12(2): 155-158(in Chinese).
    [14] 李文强. 碳纤维增强碳化硅基复合材料烧蚀计算研究[D]. 大连: 大连理工大学, 2021.

    LI Wenqiang. Numerical calculation research on ablation of carbon fiber reinforced silicon carbide matrix composite[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [15] 徐林, 杨文彬, 陈铮, 等. 高性能二维碳/碳复合材料的制备与性能[J]. 复合材料学报, 2016, 33(12): 2877-2883.

    XU Lin, YANG Wenbin, CHEN Zheng, et al. Preparation and properties of high performance two-dimensional carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2877-2883(in Chinese).
    [16] LUO R, LIU T, LI J, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004, 42(14): 2887-2895.
    [17] LUO R. Fabrication of carbon/carbon composites by an electrified preform heating CVI method[J]. Carbon, 2002, 40(11): 1957-1963
    [18] 乔淑欣. 航天用C/C复合材料及其应用制备工艺[J]. 宇航材料工艺, 2013, 43(2): 18-21.

    QIAO Shuxin. C/C composites and preparation process in aerospace application[J]. Aerospace Materials & Technology, 2013, 43(2): 18-21(in Chinese).
    [19] 张磊磊, 胡涛, 李贺军, 等. 炭/炭复合材料人工髋关节磨损颗粒研究[J]. 无机材料学报, 2010, 25(4): 349-353.

    ZHANG Leilei, HU Tao, LI Hejun, et al. Wear particles of carbon/carbon composite artificial hip joints[J]. Journal of Inorganic Materials, 2010, 25(4): 349-353(in Chinese).
    [20] 倪昕晔, 熊信柏, 尤瑞金, 等. 碳/碳复合材料表面掺镁羟基磷灰石生物涂层的体外性能[J]. 中国组织工程研究, 2017, 21(34): 5443-5448.

    NI Xinye, XIONG Xinbo, YOU Ruijin, et al. In vitro properties of magnesium doped hydroxyapatite coating on the surface of carbon/carbon composites[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(34): 5443-5448(in Chinese).
    [21] 张雨雷, 付艳芹, 付前刚, 等. 纳米管/线多尺度强韧化C/C复合材料研究现状与展望[J]. 航空材料学报, 2021, 41(3): 11-24.

    ZHANG Yulei, FU Yanqin, FU Qiangang, et al. Research status and prospect on nanotube/nanowire multi-scale-reinforced C/C composites[J]. Journal of Aeronautical Materials, 2021, 41(3): 11-24(in Chinese).
    [22] GAO B, ZHANG R, HE M, et al. Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 433-440.
    [23] YI X, TAN Z, YU W, et al. Three dimensional printing of carbon/carbon composites by selective laser sintering[J]. Carbon, 2016, 96: 603-607.
    [24] ZHANG Y, ZHANG Y, WANG T, et al. Experimental study on performances of carbon seal and finger seal under high-speed and high-pressure condition[J]. IOP Conference Series, Materials Science and Engineering, 2018, 382(2): 22044.
    [25] 张延超, 刘凯, 周连杰, 等. 基于系统响应特征的指尖密封泄漏特性分析[J]. 航空动力学报, 2013, 28(1): 205-210.

    ZHANG Yanchao, LIU Kai, ZHOU Lianjie, et al. Analysis of leakage characteristics of finger seal based on system response[J]. Journal of Aerospace Power, 2013, 28(1): 205-210(in Chinese).
    [26] ZHANG Y C, ZHOU Y M, YIN M H, et al. Experimental investigation on friction and wear performance of C/C composite finger seal[J]. Journal of Tribology, 2020, 144: 021701.
    [27] YEN B K, ISHIHARA T. An investigation of friction and wear mechanisms of carbon-carbon composites in nitrogen and air at elevated temperatures[J]. Carbon, 1996, 34(4): 489-498.
    [28] FERREIRA J R, COPPINI N L, LEVY NETO F. Characteristics of carbon-carbon composite turning[J]. Journal of Materials Processing Technology, 2001, 109(1): 65-71.
    [29] 蒋建纯, 熊翔, 杨文堂, 等. 炭/炭复合材料切削加工试验研究[J]. 新型炭材料, 2000, 15(3): 38-42.

    JIANG Jianchun, XIONG Xiang, YANG Wentang, et al. An investigation of carbon/carbon composite machining[J]. New Carbon Materials, 2000, 15(3): 38-42(in Chinese).
    [30] 郭孟, 樊会涛, 李辉. 面向航空航天的C/C复合材料加工技术研究[J]. 装备制造技术, 2014(3): 182-185.

    GUO Meng, FANG Huitao, LI Hui. C/C composites processing technology research applied in the field of aerospace[J]. Equipment Manufacturing Technology, 2014(3): 182-185(in Chinese).
    [31] 鞠伟华. C/C复合材料加工工艺及质量评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    JU Weihua. Study on the mechanical process and quality evaluating of C/C composite material[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [32] SHAN C, LIN X, WANG X, et al. Defect analysis in drilling needle-punched carbon-carbon composites perpendicular to nonwoven fabrics[J]. Advances in Mechanical Engineering, 2015, 7(8): 1-11.
    [33] 刘琼, 黄国钦. 2D C/C-SiC复合材料钻削加工试验研究[J]. 福建工程学院学报, 2019, 17(1): 7-16.

    LIU Qiong, HUANG Guoqin. Experimental study on drilling processing of 2D C/C-SiC composites[J]. Journal of Fujian University of Technology, 2019, 17(1): 7-16(in Chinese).
    [34] 蔺小军, 崔栋鹏, 单晨伟, 等. C/C复合材料钻削轴向力研究[J]. 航空制造技术, 2015(15): 60-64.

    LIN Xiaojun, CUI Dongpeng, SHAN Chenwei, et al. Experimental study on thrust force in drilling carbon/carbon composites[J]. CNC Machining Technology, 2015(15): 60-64(in Chinese).
    [35] 周井文, 秦文津, 穆英娟, 等. 碳纤维复合材料铣削与磨削加工对比研究[J]. 金刚石与磨料磨具工程, 2020, 40(4): 76-80.

    ZHOU Jingwen, QIN Wenjin, MU Yingjuan, et al. Compara-tive study on machining of CFRP by end mill and abrasive router[J]. Diamond & Abrasives Engineering, 2020, 40(4): 76-80(in Chinee).
    [36] 刘琼, 黄国钦, 徐西鹏. 2D-C/SiC复合材料磨削加工表面形成机制[J]. 福州大学学报, 2018, 46(2): 228-233.

    LIU Qiong, HUANG Guoqin, XU Xipeng. Surface forming mechanism of grinding 2D-C/SiC composites[J]. Journal of Fuzhou University, 2018, 46(2): 228-233(in Chinese).
    [37] 张立峰, 王盛, 李战, 等. 纤维方向对单向C/SiC复合材料磨削加工性能的影响[J]. 中国机械工程, 2020, 31(3): 373-377.

    ZHANG Lifeng, WANG Sheng, LI Zhan, et al. Effects of fiber direction on grinding performances for unidirectional C/SiC composites[J]. China Mechanical Engineering, 2020, 31(3): 373-377(in Chinese).
    [38] PI V N, LE X H, TUNG L A, et al. Cost optimization of internal grinding[J]. Journal of Materials Science and Engineering, 2016, 6(11/12): 291-296.
    [39] 蔡志刚, 陈晓川, 王迪, 等. 碳碳复合材料的水射流钻孔技术研究[J]. 机械工程学报, 2019, 55(3): 226-232.

    CAI Zhigang, CHEN Xiaochuan, WANG Di, et al. Research on water jet drilling technology for carbon-carbon composites[J]. Journal of Mechanical Engineering, 2019, 55(3): 226-232(in Chinese).
    [40] YIN D Y, ZHU C F, CHEN X C, et al. Finite-element analysis and an experimental study into the water jet reaming process of carbon-carbon composites[J]. Mechanics of Composite Materials, 2021, 57(2): 257-268.
    [41] 朱超凡, 陈晓川, 鲍劲松. 面向碳-碳复合材料的激光和水射流组合制孔工艺仿真建模和实验研究[J]. 现代制造工程, 2020(1): 10-17.

    ZHU Chaofan, CHEN Xiaochuan, BAO Jinsong. Simulation modeling and experimental study on hole making process combined laser and water jet for carbon-carbon composite material[J]. Modern Manufacturing Engi-neering, 2020(1): 10-17(in Chinese).
    [42] GEORGE P M, RAGHUNATH B K, MANOCHA L M, et al. Modelling of machinability parameters of carbon-carbon composite-A response surface approach[J]. Journal of Materials Processing Technology, 2004(153/154): 920-924.
    [43] GUU Y H, HOCHENG H, TAI N H, et al. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites[J]. Journal of Materials Science, 2001, 36(8): 2037-2043.
    [44] 翟兆阳, 梅雪松, 王文君, 等. 碳化硅陶瓷基复合材料激光刻蚀技术研究进展[J]. 中国激光, 2020, 47(6): 24-34.

    ZHAI Zhaoyang, MEI Xuesong, WANG Wenjun, et al. Research advancement on laser etching technology of silicon carbide ceramic matrix composite[J]. Chinese Journal of Lasers, 2020, 47(6): 24-34(in Chinese).
    [45] XU L Y, LU J R, LI K M, et al. Removal mechanism of CFRP by laser multi direction interaction[J]. Optics & Laser Technology, 2021, 143: 107281.
    [46] GENG L, LIU X, FU Q, et al. Laser ablative behavior of C/C modified by Si reactive infiltration[J]. Carbon, 2020, 168: 650-658.
    [47] ZHAI Z, WANG W, ZHAO J, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites: Part A, Applied Science and Manufacturing, 2017, 102: 117-125.
    [48] AN Q, CHEN J, MING W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Society of Aeronautics and Astronautics & Beihang University, 2020,1683:1-28.
    [49] 周一倩. 基于光纤聚焦的激光表面织构加工及其摩擦学行为研究[D]. 北京: 清华大学, 2009.

    ZHOU Yiqian. Micro laser surface texturing based on optical fiber focusing and tribological behavior of textured surfaces[D]. Beijing: Tsinghua University, 2009(in Chinese).
    [50] GUREEV D M, KUZNETSOV S I, PETROV A L. Influence of laser treatment on the structure and properties of carbon-carbon composites[J]. Proceedings of SPIE-International Society for Optical Engineering,1999,3688(10):259-265.
    [51] ZOU L, HUANG B, HUANG Y, et al. An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites[J]. Materials Chemistry and Physics, 2003, 82(3): 654-662.
    [52] GUREEV D M, KUZNETSOV S I, PETROV A L. Changes in the structure and surface properties of carbon-carbon composites under the action of laser radiation[J]. Russian Laser Research, 2000, 21(3): 274-276.
    [53] 李艳, 崔红, 嵇阿琳, 等. 热处理对C/C复合材料热膨胀行为的影响[J]. 材料导报, 2012, 26(12): 25-28.

    LI Yan, CUI Hong, JI Alin, et al. Effects of heat treatment on thermal expansion coefficient of C/C composites[J]. Materials Reports, 2012, 26(12): 25-28(in Chinese).
    [54] KUZNETSOV S I, GUREEV D M, LEVIN D S, et al. Laser-beam pattern cutting of carbon-carbon composites[C]. Russian Federation: International Conference on Laser & Laser Information Technologies, International Society for Optics and Photonics, 2001, 4644: 83-88.
    [55] LIU Q, ZHANG L, JIANG F, et al. Laser ablation behaviors of SiC-ZrC coated carbon/carbon composites[J]. Surface and Coatings Technology, 2011, 205(17/18): 4299-4303.
    [56] AL-SULAIMAN F A, YILBAS B S, AHSAN M. CO2 laser cutting of a carbon/carbon multi-lamelled plain-weave structure[J]. Journal of Materials Processing Technology, 2006, 173(3): 345-351.
    [57] QIAN J P, LU L P, LI P Y, et al. Thermal shock resistance of graphite and carbon/carbon composites in plasma disruption simulation tests[J]. Nuclear Materials, 1994(212/215): 1183-1188.
    [58] 花银群, 陈瑞芳, 肖淘, 等. 激光切割碳纤维复合材料的实验研究[J]. 激光技术, 2013, 37(5): 565-570.

    HUA Yinqun, CHEN Ruifang, XIAO Tao, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology, 2013, 37(5): 565-570(in Chinese).
    [59] KONONENKO T V, FREITAG C, KOMLENOK M S, et al. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses[J]. Journal of Applied Physics, 2014, 115(10): 103107.
    [60] 袁根福, 曾晓雁. 硬脆性无机材料激光成形加工研究与应用现状[J]. 激光与光电子学进展, 2002(6): 47-51.

    YUAN Genfu, ZENG Xiaoyan. Status and prospect of laser machining researches and applications on hard and brickle materials[J]. Laser & Optoelectronics Progress, 2002(6): 47-51(in Chinese).
    [61] 吴恩启, 石玉芳, 李美华, 等. 编织碳纤维复合材料平面内热传导规律研究[J]. 中国激光, 2016, 43(7): 168-173.

    WU Enqi, SHI Yufang, LI Meihua, et al. In-plane thermal conduction of woven carbon fiber reinforced polymer[J]. Chinese Journal of Lasers, 2016, 43(7): 168-173(in Chinese).
    [62] 高燕, 宋怀河, 陈晓红. C/C复合材料的研究进展[J]. 材料导报, 2002, 16(7): 44-47.

    GAO Yan, SONG Huaihe, CHEN Xiaohong. Progress in research on C/C composites[J]. Materials Reports, 2002, 16(7): 44-47(in Chinese).
    [63] JUNG K, KAWAHITO Y, KATAYAMA S. Ultra-high speed disk laser cutting of carbon fiber reinforced plastics[J]. Journal of Laser Applications, 2012, 24(1): 12007.
    [64] OH S, LEE I, PARK Y, et al. Investigation of cut quality in fiber laser cutting of CFRP[J]. Optics & Laser Technology, 2019, 113: 129-140.
    [65] ZHAI Z, ZHANG R, TANG A, et al. Fabrication of microstructure on C/SiC surface via femtosecond laser diffraction[J]. Materials Letters, 2021, 293: 129711.
    [66] ZHAI Z, WANG F, DUAN H. Experimental study on 800 nm femtosecond laser cutting of polyamide in air[J]. Optik, 2019, 194: 163080.
    [67] ZHAI Z, WANG F, MEI X, et al. Preparation of graphene directly on liquid EB curing ink film by femtosecond laser[J]. Optik, 2020, 223: 165485.
    [68] 蒋翼, 陈根余, 周聪, 等. 碳纤维复合材料皮秒激光切割工艺研究[J]. 激光技术, 2017, 41(6): 821-825.

    JIANG Yi, CHEN Genyu, ZHOU Cong, et al. Research of carbon fiber reinforced plastic cut by picosecond laser[J]. Laser Technology, 2017, 41(6): 821-825(in Chinese).
    [69] WANG J, LIU Y, WANG C, et al. Character and mechanism of surface micromachining for C/SiC composites by ultrashort plus laser[J]. Advances in Applied Ceramics, 2017, 116(2): 99-107.
    [70] 方光武, 宋迎东, 高希光. 针刺C/SiC复合材料应力-应变模型及试验验证[J]. 复合材料学报, 2016, 33(4): 827-832.

    FANG Guangwu, SONG Yingdong, GAO Xiguang. Model and test validation of stress-strain for needled C/SiC composite[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 827-832(in Chinese).
    [71] 张若衡. SiC/SiC复合材料的超快激光加工工艺与特性研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2016.

    ZHANG Ruoheng. Machining technology and properties investigation of SiC/SiC composites by ultra-short pulse laser[D]. Xi’an: Chinese Academy of Sciences(Xi’an Institute of Optics & Precision Mechanics), 2016(in Chinese).
    [72] ZHAI Z, WANG W, MEI X, et al. Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites[J]. Optics Communications, 2018, 424: 137-144.
    [73] DITTMAR H, GÄBLER F, STUTE U. UV-laser ablation of fibre reinforced composites with ns-pulses[J]. Physics Proedria, 2013, 41: 266-275.
    [74] ZHAI Z, ZHANG Y, CUI Y, et al. Investigations on the ablation behavior of C/SiC under femtosecond laser[J]. Optik, 2020, 224: 165719.
    [75] SUN D, HAN F, YING W. The experimental investigation of water jet-guided laser cutting of CFRP[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(1): 719-729.
    [76] 刘敬明, 曹凤国. 激光复合加工技术的应用及发展趋势[J]. 电加工与模具, 2006(4): 5-9.

    LIU Jingming, CAO Fengguo. Application and development trend of laser combined machining technology[J]. Electrical Machining and Mould, 2006(4): 5-9(in Chinese).
    [77] 张昌娟, 焦锋, 赵波, 等. 激光超声复合切削硬质合金的刀具磨损及其对工件表面质量的影响[J]. 光学精密工程, 2016, 24(6): 1413-1423.

    ZHANG Changjuan, JIAO Feng, ZHAO Bo, et al. Tool wear in laser ultrasonically assisted cutting cemented carbide and its effect on surface quality[J]. Optics and Precision Engineering, 2016, 24(6): 1413-1423(in Chinese).
    [78] 段鹏, 焦锋, 牛赢, 等. 激光超声复合加工硬质合金的切削特性研究[J]. 机械科学与技术, 2017, 36(4): 592-597.

    DUAN Peng, JIAO Feng, NIU Ying, et al. Machinability of tungsten carbide with assistance of laser and ultrasonic vibration[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(4): 592-597(in Chinese).
    [79] ALAVI S H, HARIMKAR S P. Evolution of geometric and quality features during ultrasonic vibration-assisted continuous wave laser surface drilling[J]. Journal of Materials Processing Technology, 2016, 232: 52-62.
    [80] FAN Z, WANG K, DONG X, et al. The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+V2O5)[J]. Corrosion Science, 2017, 115: 56-67.
    [81] AL-AHMARIAB A, RASHEEDA M S, MOHAMMEDA M K, et al. A hybrid machining process combining micro-EDM and laser beam machining of nickel-titanium based shape memory alloy[J]. Materials and Manufacturing Processes, 2015,1072:954.
    [82] BACHMANN M, AVILOV V, GUMENYUK A, et al. About the influence of a steady magnetic field on weld pool dyna-mics in partial penetration high power laser beam welding of thick aluminum parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309-321.
    [83] LU Y, SUN G F, WEN D P, et al. Effects of applying electric and magnetic fields on laser drilling[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(9/12): 2293-2300.
    [84] KRAY D, FELL A, HOPMAN S, et al. Laser chemical processing (LCP)-A versatile tool for microstructuring applications[J]. Applied Physics A, 2008, 93(1): 99-103.
    [85] MEHRAFSUN S, MESSAOUDI H. Dynamic process behavior in laser chemical micro machining of metals[J]. Manufacturing and Materials Processing, 2018, 54: 1-18.
    [86] 陈雪辉, 李翔, 吴超, 等. 水射流辅助激光加工碳化硅的影响研究[J]. 激光与光电子学进展, 2019, 56(1): 225-231.

    CHEN Xuehui, LI Xiang, WU Chao, et al. Influence of water jet assisted laser processing silicon carbide[J]. Laser & Optoelectronics Progress, 2019, 56(1): 225-231(in Chinese).
    [87] 刘斌, 戴玉堂, 殷广林, 等. 超声波辅助飞秒激光加工光纤材料的工艺探索[J]. 中国激光, 2016, 43(3): 66-71.

    LIU Bin, DAI Yutang, YIN Guanglin, et al. Exploration on ultrasonic vibration aided femtosecond laser machining process of fiber optic materials[J]. Chinese Journal of Lasers, 2016, 43(3): 66-71(in Chinese).
    [88] 徐家乐. 电磁超声复合能场辅助激光熔覆钴基合金涂层组织及性能研究[D]. 镇江: 江苏大学, 2019.

    XU Jiale. Study on microstructure and properties of co-based coatings by laser cladding coupled with electromagnetic/ultrasonic compound energy field[D]. Zhenjiang: Jiangsu University, 2019(in Chinese).
  • 加载中
图(21)
计量
  • 文章访问数:  2091
  • HTML全文浏览量:  2020
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-10-05
  • 录用日期:  2021-10-24
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回