留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoFe2O4@C复合纳米纤维膜作为自支撑锂离子电池负极

赵婷婷 李小强 张亚梅 丁旭丽 向军

赵婷婷, 李小强, 张亚梅, 等. CoFe2O4@C复合纳米纤维膜作为自支撑锂离子电池负极[J]. 复合材料学报, 2022, 39(9): 1-10 doi: 10.13801/j.cnki.fhclxb.20220530.001
引用本文: 赵婷婷, 李小强, 张亚梅, 等. CoFe2O4@C复合纳米纤维膜作为自支撑锂离子电池负极[J]. 复合材料学报, 2022, 39(9): 1-10 doi: 10.13801/j.cnki.fhclxb.20220530.001
Tingting ZHAO, Xiaoqiang LI, Yamei ZHANG, Xuli DING, Jun XIANG. CoFe2O4@C composite nanofiber films as self-standing anodes for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 1-10. doi: 10.13801/j.cnki.fhclxb.20220530.001
Citation: Tingting ZHAO, Xiaoqiang LI, Yamei ZHANG, Xuli DING, Jun XIANG. CoFe2O4@C composite nanofiber films as self-standing anodes for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 1-10. doi: 10.13801/j.cnki.fhclxb.20220530.001

CoFe2O4@C复合纳米纤维膜作为自支撑锂离子电池负极

doi: 10.13801/j.cnki.fhclxb.20220530.001
基金项目: 国家自然科学基金(11874282)
详细信息
    通讯作者:

    向军,博士,教授,研究方向为能源与环境材料 E-mail: jxiang@just.edu.cn

  • 中图分类号: TB332;TM911

CoFe2O4@C composite nanofiber films as self-standing anodes for lithium-ion batteries

Funds: National Natural Science Foundation of China (11874282);
  • 摘要: 为了提高CoFe2O4作为锂离子电池负极材料的综合电化学性能,将其与高导电性的碳纤维进行复合。通过静电纺丝及低温碳化制备了均匀镶嵌CoFe2O4纳米颗粒的碳纳米纤维(CoFe2O4@CNFs)柔性复合膜,使用XRD、TG、Raman、SEM、TEM、CV、GCD和EIS等对复合物进行表征,着重研究了CoFe2O4含量对其储锂性能的影响。该复合膜直接用作自支撑锂离子电池负极时表现出较好的电化学性能。CoFe2O4的引入显著提高了碳纳米纤维膜的电化学性能,随着CoFe2O4含量的增加,CoFe2O4@CNFs电极的比容量先增加后减小,CoFe2O4含量约为33.3%(w/w)的CoFe2O4@CNFs-3电极具有最高的比容量和更好的循环及倍率性能。在0.1 A·g−1的电流密度下,充放电循环100圈后比容量为611.4 mA·h·g−1,相对第二圈的容量保持率为94%; 当电流密度增大到2 A·g−1时,其比容量仍有353.6 mA·h·g−1。CoFe2O4@CNFs-3更好的电化学性能主要归因于高电化学活性CoFe2O4和高导电纳米碳纤维的恰当结合及更好的协同效应。

     

  • 图  1  CoFe2O4@CNFs和纯CNFs的XRD图谱

    Figure  1.  XRD patterns of CoFe2O4@CNFs and pure CNFs films

    图  2  CoFe2O4@CNFs的Raman图谱

    Figure  2.  Raman spectra of CoFe2O4@CNFs

    图  3  CoFe2O4@CNFs的TG曲线

    Figure  3.  TG curves of CoFe2O4@CNFs

    图  4  CoFe2O4@CNFs复合膜的SEM图像 ((a)~(c)) 和TEM图像 ((d)~(f))

    Figure  4.  SEM images ((a)-(c)) and TEM images ((d)-(f)) of CoFe2O4@CNFs

    ((a), (d)) CoFe2O4@CNFs-1; ((b), (e)) CoFe2O4@CNFs-3; ((c), (f)) CoFe2O4@CNFs-5

    图  5  CoFe2O4@CNFs-3的HRTEM图像(a)和SAED花样(b)

    Figure  5.  HRTEM image (a) and SAED pattern (b) of CoFe2O4@CNFs-3

    图  6  CoFe2O4@CNFs-3电极的前5圈CV曲线和纯CNFs电极的CV曲线

    Figure  6.  First five CV curves of the CoFe2O4@CNFs-3 electrode; the set is the CV curve of the CNFs electrode

    图  7  CoFe2O4@CNFs-3电极在0.1 A·g−1时的充放电曲线

    Figure  7.  Galvanostatic charge-discharge curves of the CoFe2O4@CNFs-3 electrode at 0.1 A·g−1

    图  8  CoFe2O4@CNFs和纯CNFs电极在0.1 A·g−1电流密度下的循环性能

    Figure  8.  Cycling performances of the CoFe2O4@CNFs and pure CNFs electrodes at 0.1 A·g−1

    图  9  CoFe2O4@CNFs和纯CNFs电极的倍率性能

    Figure  9.  Rate performances of the CoFe2O4@CNFs and pure CNFs electrodes at different current densities

    图  10  原始电池的EIS图谱及相应等效电路 (a) 和低频区域Z'ω−1/2的关系图 (b)

    Figure  10.  (a) EIS spectra and corresponding equivalent circuit (inset) of the pristine batteries with CoFe2O4@CNFs or CNFs anode; (b) Plots of Z' versus ω−1/2 in the low-frequency region

    Rct—Charge transfer resistance; Rs—Resistance of solution between working electrode and opposite electrode; Zw—Weber impedance; CPE—Phase Angle element; Z'—Real part of impedance; Z"—Imaginary part of impedance; ω—Angular frequency

    图  11  CoFe2O4@CNFs-3电极在0.1 A·g‒1下循环100圈后的SEM图像

    Figure  11.  SEM image of CoFe2O4@CNFs-3 electrode after 100 cycles at 0.1 A·g‒1

    表  1  CoFe2O4@CNFs-3与其他一些双金属氧化物基负极材料的性能比较

    Table  1.   Performance comparison of CoFe2O4@CNFs-3 and some bimetallic oxides based anode materials

    PAN/wt% CoFe2O4/wt%
    CoFe2O4@CNFs-1 9.5 1
    CoFe2O4@CNFs-3 9.5 3
    CoFe2O4@CNFs-5 9.5 5
    下载: 导出CSV

    表  2  CoFe2O4@CNFs-3与其他一些双金属氧化物基负极材料的性能比较

    Table  2.   Performance comparison of CoFe2O4@CNFs-3 and some bimetallic oxides based anode materials

    SamplesCurrent density/(mA·g−1)Capacity/(mA·h·g−1)Cycle numberRef.
    NiFe2O4@C fibers 100 497 100 [31]
    CoMn2O4/N doped carbon 100 585 10 [32]
    ZnCo2O4 50 572 30 [33]
    Porous CoFe2O4 nanocubes 50 360 50 [34]
    ZnMn2O4 100 433 50 [35]
    FeCo2O4 50 422 100 [36]
    ZnCo2O4/C 50 463 100 [37]
    CoFe2O4@CNFs-3 100 611.4 100 This work
    下载: 导出CSV
  • [1] ZHANG L Q, ZHU X C, YU S C, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemistry,2022,66:260-294. doi: 10.1016/j.jechem.2021.08.001
    [2] 张鹏, 刘洋, 陈明华, 等. 高性能自支撑CuS/SnS2锂电池负极材料[J]. 复合材料学报, 2021, 38(3):871-878.

    ZHANG Peng, LIU Yang, CHEN Minghua, et al. High-performance self-supporting CuS/SnS2 lithium battery anode material[J]. Acta Materiae Compositae Sinica,2021,38(3):871-878(in Chinese).
    [3] ZHANG X D, ZHAO Y R, ZHANG C Y, et al. Cobalt sulfide embedded carbon nanofibers as a self-supporting template to improve lithium ion battery performances[J]. Electrochimica Acta,2021,366:137351. doi: 10.1016/j.electacta.2020.137351
    [4] XUE H, FANG Y X, ZENG L X, et al. Facile synthesis of hierarchical lychee-like Zn3V3O8@C/rGO nanospheres as high-performance anodes for lithium ion batteries[J]. Journal of Colloid and Interface Science,2019,533:627-635. doi: 10.1016/j.jcis.2018.08.110
    [5] DENG Z H. A fluorine-doped MnFe2O4 nanorod/carbon composite as an anode material for high-performance lithium-ion batteries[J]. International Journal of Electrochemical Science,2020,15:4203-4217.
    [6] ZHANG M, LI D W, YANG L J, et al. Dendritic micro-nano NiCo2O4 anode material generated from chemical dealloying for high-performance lithium-ion batteries[J]. Ionics,2020,26(4):5385-5392.
    [7] SHI S H, WANG G L, WAN G P, et al. Titanium niobate (Ti2Nb10O29) anchored on nitrogen-doped carbon foams as flexible and self-supported anode for high-performance lithium ion batteries[J]. Journal of Colloid and Interface Science,2021,587:622-632. doi: 10.1016/j.jcis.2020.11.019
    [8] UM J H, PARK H, CHO Y, et al. 3 D interconnected SnO2-coated Cu foam as a high-performance anode for lithium-ion battery applications[J]. RSC Advances,2014,4(101):58059-58063. doi: 10.1039/C4RA12297F
    [9] XIA H, LAI M, LU L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry,2010,20(33):68-96.
    [10] WANG C, SUN C S, YUAN H F, et al. Iron and silicon oxide doped/PAN carbon nanofibers as free-standing anode material for Li-ion batteries[J]. Journal of Colloid and Interface Science,2020,569:164-176. doi: 10.1016/j.jcis.2020.02.059
    [11] ZHANG T, QIU D P, HOU Y L. Free-standing and consecu-tive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries[J]. Nano Energy,2022,94:106909. doi: 10.1016/j.nanoen.2021.106909
    [12] ZHU Y F, XIAO Y, DOU S X, et al. Spinel/post-spinel engi-neering on layered oxide cathodes for sodium-ion batteries[J]. eScience,2021,1(1):13-27. doi: 10.1016/j.esci.2021.10.003
    [13] SAHU A K, ARAVIND R, BRAHMA G S. Synthesis and investigation of structural, morphological, thermal behaviour, and magnetic properties of CoFe2O4-MnO2 nano-composites[J]. Materials Today: Proceedings,2022,49(5):1762-1768.
    [14] JIN L M, QIU Y G, HONG D, et al. Hollow CuFe2O4 spheres encapsulated in carbon shells as an anode material for rechargeable lithium-ion batteries[J]. Electrochimica Acta,2011,56(25):9127-9132. doi: 10.1016/j.electacta.2011.07.097
    [15] FRANCO A, BURDA C, ALVES T E P, et al. Magnetic-plasmonic properties of CoFe2O4@Au nanocomposite[J]. Journal of Physics and Chemistry of Solids,2022,164:110630. doi: 10.1016/j.jpcs.2022.110630
    [16] YOUNG H, YOO J H, LEE Y N. Electrospun CoFe2O4 nano-fibers as high capacity anode materials for Li-ion batteries[J]. Journal of Nanoscience and Nanotechnology,2017,17(10):7632-7635. doi: 10.1166/jnn.2017.14763
    [17] NIU X G, ZHANG Y C, TAN L L, et al. Amorphous FeVO4 as a promising anode material for potassium-ion batteries[J]. Energy Storage Materials,2019,22:160-167. doi: 10.1016/j.ensm.2019.01.011
    [18] 陈东, 郑宝成, 丘德立, 等. 锂离子电池Mo2C/N-C复合材料的制备及性能研究[J]. 化工新型材料, 2020, 48(6):67-71, 76.

    CHEN Dong, Zheng Baocheng, Qiu Deli, et al. Preparation and property of Mo2/N-C composite material for lithium-ion battery[J]. New chemical materials,2020,48(6):67-71, 76(in Chinese).
    [19] THAUER E, WEGENER S A, ZHU Q, et al. Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds,2021,853:157364. doi: 10.1016/j.jallcom.2020.157364
    [20] XIANG J, WU Z P, ZHANG X K, et al. Enhanced electrochemical performance of an electrospun carbon/MoO2 composite nanofiber membrane as self-standing anodes for lithium-ion batteries[J]. Materials Research Bulletin,2018,100:254-258. doi: 10.1016/j.materresbull.2017.12.045
    [21] XU Z L, ZHANG B, ZHOU Z Q, et al. Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries[J]. RSC Advances,2014,4:22359-22366. doi: 10.1039/C4RA03066D
    [22] XU J L, ZHANG L, XU G C, et al. Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors[J]. Applied Surface Science,2018,434:112-119. doi: 10.1016/j.apsusc.2017.09.233
    [23] 韩啸, 吴华龙, 黄友章, 等. 锂离子电池的工作原理与关键材料[J]. 金属功能材料, 2021, 28(2):37-58.

    HAN Xiao, WU Hualong, HUANG Youzhang, et al. Working mechanism and keymaterials of the lithiumion batteries[J]. Metallic Functional Materials,2021,28(2):37-58(in Chinese).
    [24] WANG B, WU Y P, WANG D, et al. Electrochemical perfor-mance of carbon/Ni composite fibers from electro-spinning as anode material for lithium ion batteries[J]. Journal of Materials Chemistry A,2013,1(4):1368-1373. doi: 10.1039/C2TA00487A
    [25] RAWAT R S, REDDY M V, CHOWDARI B V R, et al. Molten salt synthesis of CoFe2O4 and its energy storage properties[J]. Materials Chemistry and Physics,2021,257:123747. doi: 10.1016/j.matchemphys.2020.123747
    [26] DAI Z X, LI R R, SU X L, et al. Facile synthesis and high lithium storage properties of mesoporous polypyrrole coated CoFe2O4 nanofibers[J]. Journal of Alloys and Compounds,2021,858:159324.
    [27] NIE J J, FU H, LI Z T, et al. Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-perfor-mance anodes for lithium-ion batteries[J]. Materials Letters,2021,300:130152. doi: 10.1016/j.matlet.2021.130152
    [28] 郑卓, 郭孝东, 吴振国, 等. 碳包覆改性制备高倍率性能的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2[J]. 无机化学学报, 2017, 33(1):106-114.

    ZHENG Zhuo, XIANG Wei, GUO Xiaodong, et al. Preparation of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode for high-rate lithium ion batteries[J]. Chinese Journal of Inorganic Chemistry,2017,33(1):106-114(in Chinese).
    [29] FAN C Y, XIAO P, LI H H, et al. Nanoscale polysulfides reactors achieved by chemical Au–S interaction: Improving the performance of Li–S batteries on the electrode level[J]. ACS Applied Materials & Interfaces,2015,7(50):27959-27967.
    [30] SHENOUDA A Y, LIU H K. Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries[J]. Journal of The Electrochemical Society,2010,157(11):1182-1187.
    [31] WANG G, DONG T, YANG P. Electrospun NiFe2O4@C fibers as high-performance anode for lithium-ion batteries[J]. Diamond and Related Materials,2017,73:210-217. doi: 10.1016/j.diamond.2016.09.024
    [32] 张庆, 酒红芳, 高玉莹, 等. 中空CoMn2O4/NC复合物的合成及其电化学性能研究[J]. 精细化工中间体, 2018, 48(5):59-63.

    ZHANG Qing, JIU Hongfang, GAO Yuying, et al. Synthesis and electrochemical properties of hollow CoMn2O4/NC composites[J]. Fine Chemical Intermediates,2018,48(5):59-63(in Chinese).
    [33] 吴静嫆, 张帆, 李求忠, 等. 球形ZnCo2O4用于锂离子电池负极材料的研究[J]. 化工时刊, 2018, 32(10):8-11.

    WU Jingrong, ZHNG Fan, LI Qiuzhong, et al. Study on the sphere ZnCo2O4 anode material for Li-ion battery[J]. Chemical Industry Times,2018,32(10):8-11(in Chinese).
    [34] ZHANG X J, LI D S, ZHU G, et al. Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries[J]. Journal of Colloid and Interface Science,2017,499:145-150. doi: 10.1016/j.jcis.2017.03.104
    [35] 王洪波, 程方益, 陶占良, 等. 锂离子电池负极材料ZnMn2O4微米空心球的制备和电化学性能[J]. 无机化学学报, 2011, 27(5):816-822.

    WANG Hongbo, CHENG Fangyi, TAO Zhanliang, et al. The synthesis and electrochemical performance of ZnMn2O4 hollow microspheres as anode material for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry,2011,27(5):816-822(in Chinese).
    [36] HE Q M, GU S, WU T, et al. Self-supported mesoporous FeCo2O4 nanosheets as high capacity anode material for sodium-ion battery[J]. Chemical Engineering Journal,2017,330:764-773. doi: 10.1016/j.cej.2017.08.014
    [37] LI H G, WANG S B, FENG M J, et al. MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries[J]. Chinese Chemical Letters,2019,30(2):529-532. doi: 10.1016/j.cclet.2018.06.024
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  44
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-05-27
  • 修回日期:  2022-05-17
  • 网络出版日期:  2022-06-01
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回