留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4/Pb复合材料制备及其在铅炭电池负极材料中的应用

谢发之 张道德 杨少华 宋恒帅 张梦 方亮 邵永刚

谢发之, 张道德, 杨少华, 等. g-C3N4/Pb复合材料制备及其在铅炭电池负极材料中的应用[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 谢发之, 张道德, 杨少华, 等. g-C3N4/Pb复合材料制备及其在铅炭电池负极材料中的应用[J]. 复合材料学报, 2022, 40(0): 1-11
Fazhi XIE, Daode ZHANG, Shaohua YANG, Hengshuai SONG, Meng ZHANG, Xing FANG, Yonggang SHAO. Preparation of g-C3N4/Pb composites and application in anode materials for lead carbon batteries[J]. Acta Materiae Compositae Sinica.
Citation: Fazhi XIE, Daode ZHANG, Shaohua YANG, Hengshuai SONG, Meng ZHANG, Xing FANG, Yonggang SHAO. Preparation of g-C3N4/Pb composites and application in anode materials for lead carbon batteries[J]. Acta Materiae Compositae Sinica.

g-C3N4/Pb复合材料制备及其在铅炭电池负极材料中的应用

基金项目: 安徽省教育厅自然科学研究重大项目 (KJ2018 ZD049);国家自然科学基金(21777001、21671003)
详细信息
    通讯作者:

    谢发之,博士,教授,硕士生导师,研究方向为功能材料 E-mail: fzxie@ahjzu.edu.cn

  • 中图分类号: TQ152

Preparation of g-C3N4/Pb composites and application in anode materials for lead carbon batteries

  • 摘要: 为改善铅炭电池的析氢缺陷,提高电池循环使用寿命,以尿素为前驱体制备层状g-C3N4,并将其作为添加剂制备铅炭电池负极板,以活性炭(AC)为对照,研究了g-C3N4结构和添加量对铅炭电池电化学性能的影响。结果表明:g-C3N4的加入使析氢反应(HER)得到明显抑制,−1.5 V下1wt% g-C3N4负极板的析氢电流仅为活性炭负极板的5%。交流阻抗谱图显示1wt% g-C3N4和活性炭负极材料阻抗(Rs)为0.19868 Ω 和1.749 Ω。更重要的是1wt% g-C3N4负极板比电容比1wt% 活性炭负极板高344%。在5000 h 高倍率部分荷电态(HRPSoC)下的电池循环寿命测试中,加入g-C3N4后电池寿命比加入活性炭提升62%。500次循环后,电池容量保持率仍有70%。g-C3N4可有效抑制析氢反应,提高比电容从而延长电池循环寿命,且成本低廉,可作为一种新的负极添加剂来改善铅炭电池性能。

     

  • 图  1  g-C3N4和活性炭 XRD、SEM图(a);g-C3N4和活性炭红外光谱图(b);g-C3N4吸脱附曲线与孔径分布图(c);活性炭吸脱附曲线与孔径分布图(d)

    Figure  1.  (a) g-C3N4 and activated carbon XRD, SEM images; (b) Infrared spectra of g-C3N4 and activated carbon; (c) g-C3N4 adsorption and desorption curves and pore size distribution; (d) activated carbon adsorption and desorption curves and pore size distribution

    图  3  g-C3N4、活性炭循环伏安图(a);g-C3N4、活性炭交流阻抗图谱(b);g-C3N4、活性炭LSV图(c);不同含量的g-C3N4 LSV图(d)

    Figure  3.  (a) Cyclic voltammogram of g-C3N4 and activated carbon; (b) AC impedance patterns of g-C3N4 and activated carbon; (c) LSV plots of g-C3N4 and activated carbon; (d) LSV plots of g-C3N4 with different contents

    图  2  等效电路图

    Figure  2.  Analog circuit diagram

    图  4  不同添加量的g-C3N4和添加1wt% 活性炭电池4 h充放电图(a);不同添加量的g-C3N4和添加1wt% 活性炭电池的Tafer曲线 (b);不同添加量的g-C3N4电池和活性炭电池的放电曲线(c);电池容量保持率(d)

    Figure  4.  (a) different amounts of g-C3N4 and 1wt% AC were added to the charge and discharge diagram of the battery for 4 h; (b) Tafer curves of g-C3N4 with different supplemental levels and 1wt% activated carbon batteries; (c) discharge curves of g-C3N4 cells and activated carbon cells with different concentrations; (d) battery capacity retention chart

    图  5  g-C3N4作用示意图

    Figure  5.  Schematic diagram for effect of g-C3N4

    图  6  HRPSoC工作状态下充放电进度示意图

    Figure  6.  Schematic diagram for charge/discharge progress under HRPSoC duty

    图  7  (a)、(b)加入活性炭的负极板循环前板极内部的SEM;(c)、(d)加入g-C3N4负极板循环前板极内部的SEM;(e)、(f)加入活性炭的负极板循环后板极内部的SEM ;(g)、(h)加入g-C3N4负极板循环后板极内部的SEM

    Figure  7.  (a), (b) SEM of the inside of the plate pole before the cycle of the negative plate with the addition of AC; (c), (d) SEM of the inside of the plate pole before the cycle of the negative plate with the addition of g-C3N4; (e), (f) SEM of the inside of the plate pole after circulation of the negative plate with the addition of AC; (g), (h) SEM of the inside of the plate pole after circulation of the negative plate with the addition of g-C3N4

    图  8  添加1wt% 活性炭和g-C3N4负极板循环后板极内部的XRD图 (a) ;添加1wt% 活性炭和g-C3N4负极板循环后板极PbSO4半峰宽对比图(b)

    Figure  8.  (a) XRD diagram of the interior of the plate electrode after cycling with 1wt% activated carbon and g-C3N4 negative plate; (b) Comparison of the half-peak width of PbSO4 at the plate electrode after cycling with 1wt% activated carbon and g-C3N4 negative plate

    图  9  添加 1wt% AC负极板吸脱附曲线与孔径分布图(a)、(b);添加 1wt% g-C3N4负极板吸脱附曲线与孔径分布图(c)、(d) );添加 2wt% g-C3N4负极板吸脱附曲线与孔径分布图(c)、(d)

    Figure  9.  (a), (b) Adsorption and desorption curves and pore size distribution of 1wt% AC negative plate; (c), (d) Adsorption and desorption curves of negative plate with 1wt% g-C3N4 and pore size distribution; (e), (f) Adsorption and desorption curves of negative plate with 2wt% g-C3N4 and pore size distribution

    表  1  Tafer曲线拟合数据值

    Table  1.   Tafer curve fitting data values

    Sampleab
    1wt% AC0.324850.29929
    0.5wt% g-C3N40.195460.17436
    1wt% g-C3N40.1670.152
    2wt% g-C3N40.184480.16509
    3wt% g-C3N40.214370.19035
    4wt% g-C3N40.273740.25704
    下载: 导出CSV
  • [1] FUSINlLO G, ROSESTOLATO D, SCURA F, et al. Lead paste recycling based on conversion into battery grade oxides. Electrochemical tests and industrial production of new batteries[J]. Journal of Power Sources,2018,381:127-135. doi: 10.1016/j.jpowsour.2018.02.019
    [2] HU Y, YANG J, HU J, et al. Lead-Carbon Batteries: Synthesis of Nanostructured PbO@C Composite Derived from Spent Lead-Acid Battery for Next-Generation Lead-Carbon Battery[J]. Advanced Functional Materials,2018,28(9):1870056. doi: 10.1002/adfm.201870056
    [3] MOSELEY P T, RAND D A J, DAVIDSON A, et al. Understanding the functions of carbon in the negative active-mass of the lead–acid battery: A review of progress[J]. Journal of Energy Storage,2018,19:272-290. doi: 10.1016/j.est.2018.08.003
    [4] HAO H, CHEN K, LIU H, et al. A review of the positive electrode additives in lead-acid batteries[J]. Int. J. Electrochem. Sci,2018,13:2329-2340.
    [5] WU Y K, TANG K T. Frequency support by BESS–Review and analysis[J]. Energy Procedia,2019,156:187-191. doi: 10.1016/j.egypro.2018.11.126
    [6] TIAN X, WU Y, HOU P, et al. Environmental impact and economic assessment of secondary lead production: Comparison of main spent lead-acid battery recycling processes in China[J]. Journal of Cleaner Production,2017,144:142-148. doi: 10.1016/j.jclepro.2016.12.171
    [7] TUNDORN P, CHAILAPAKUL O, TANTAVICHET N. Polyaspartate as a gelled electrolyte additive to improve the performance of the gel valve-regulated lead-acid batteries under 100% depth of discharge and partial-state-of charge conditions[J]. Journal of Solid State Electrochemistry,2016,20(3):801-811. doi: 10.1007/s10008-015-3117-z
    [8] KAMENEV Y, SHTOMPEL G, OSTAPENKO E, et al. Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery[J]. Journal of Power Sources,2014,257:181-185. doi: 10.1016/j.jpowsour.2014.01.111
    [9] MOSELEY P T, RAND D A J, MONAHOV B. Designing lead–acid batteries to meet energy and power requirements of future automobiles[J]. Journal of Power Sources,2012,219:75-79. doi: 10.1016/j.jpowsour.2012.07.040
    [10] RAND D A J, MOSELEY P T. Lead–acid battery fundamentals//Lead-Acid Batteries for Future Automobiles[J]. Elsevier,2017:97-132.
    [11] NETHAJI E L, SRINIVAS K, MURTHY K S, et al. Effect of Properties of Carbon Materials on Performance of VRLA Batteries[J]. Journal of Energy and Power Engineering,2015,9:1029-1035.
    [12] HUANG T, OU W, FENG B, et al. Researches on current distribution and plate conductivity of valve-regulated lead-acid batteries[J]. Journal of Power Sources,2012,210:7-14. doi: 10.1016/j.jpowsour.2012.02.086
    [13] MOSELEY P T, BONNET B, COOPER A, et al. Lead–acid battery chemistry adapted for hybrid electric vehicle duty[J]. Journal of Power Sources,2007,174(1):49-53. doi: 10.1016/j.jpowsour.2007.06.065
    [14] MOSELEY P T, NELSON R F, HOLLENKAMP A F. The role of carbon in valve-regulated lead–acid battery technology[J]. Journal of power sources,2006,157(1):3-10. doi: 10.1016/j.jpowsour.2006.02.031
    [15] MOSELEY P T. Consequences of including carbon in the negative plates of Valve-regulated Lead–Acid batteries exposed to high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2009,191(1):134-138. doi: 10.1016/j.jpowsour.2008.08.084
    [16] MOSELEY P T, RAND D A J, PETERS K. Enhancing the performance of lead–acid batteries with carbon–In pursuit of an understanding[J]. Journal of Power Sources,2015,295:268-274. doi: 10.1016/j.jpowsour.2015.07.009
    [17] PAVLOV D, NIKOLOV P, ROGACHEV T. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part II. Effect of carbon additives on the processes of charge and discharge of negative plates[J]. Journal of Power Sources,2010,195(14):4444-4457. doi: 10.1016/j.jpowsour.2009.12.132
    [18] PAVLOV D, NIKOLOV P, ROGACHEV T. Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance[J]. Journal of Power Sources,2011,196(11):5155-5167. doi: 10.1016/j.jpowsour.2011.02.014
    [19] PAVLOV D, NIKOLOV P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead–acid batteries and elementary processes on cycling[J]. Journal of Power Sources,2013,242:380-399. doi: 10.1016/j.jpowsour.2013.05.065
    [20] WANG L, ZHANG H, CAO G, et al. Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries[J]. Electrochimica Acta,2015,186:654-663. doi: 10.1016/j.electacta.2015.11.007
    [21] WU Q, CHEN M, WANG S, et al. Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor[J]. Chemical Engineering Journal,2016:29-38.
    [22] TONG P, ZHAO R, ZHANG R, et al. Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2015,286:91-102. doi: 10.1016/j.jpowsour.2015.03.150
    [23] XIE J, HU Y, WU X, et al. Positive Effects of Highly Graphitized Porous Carbon Loaded with PbO on Cycle Performance of Negative Plates of Lead-Acid Batteries[J]. Applied Sciences,2021,11(18):8469. doi: 10.3390/app11188469
    [24] JIANG Z, WANG T, SONG L, et al. High over-potential nitrogen-doped activated carbon towards hydrogen evolution inhibition in sulfuric acid solution[J]. Journal of Materials Science:Materials in Electronics,2018,29(16):14170-14179. doi: 10.1007/s10854-018-9550-x
    [25] WANG F, HU C, LIAN J, et al. Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries[J]. RSC advances,2017,7(7):4174-4178. doi: 10.1039/C6RA26093D
    [26] WANG F, HU C, LIAN J, et al. Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries[J]. RSC advances,2017,7(7):4174-4178. doi: 10.1039/C6RA26093D
    [27] BANERJEE A, ZIV B, SHILINA Y, et al. Single-wall carbon nanotube doping in lead-acid batteries: a new horizon[J]. ACS applied materials & interfaces,2017,9(4):3634-3643.
    [28] SARAVANAN M, GANESAN M, AMBALAVANAN S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J]. Journal of Power Sources,2014,251:20-29. doi: 10.1016/j.jpowsour.2013.10.143
    [29] XIANG J, DING P, ZHANG H, et al. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2013,241:150-158. doi: 10.1016/j.jpowsour.2013.04.106
    [30] FERNANDEZ M, VALENCIANO J, TRINIDAD F, et al. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications[J]. Journal of Power Sources,2010,195(14):4458-4469. doi: 10.1016/j.jpowsour.2009.12.131
    [31] WANG F, HU C, ZHOU M, et al. Research progresses of cathodic hydrogen evolution in advanced lead–acid batteries[J]. Science bulletin,2016,61(6):451-458. doi: 10.1007/s11434-016-1023-0
    [32] YIN J, LIN N, ZHANG W, et al. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface[J]. Journal of energy chemistry,2018,27(6):1674-1683. doi: 10.1016/j.jechem.2018.03.002
    [33] NAKAMURA K, SHIOMI M, TAKAHASHI K, et al. Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources,1996,59(1-2):153-157. doi: 10.1016/0378-7753(95)02317-8
    [34] TONG P, ZHAO R, ZHANG R, et al. Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2015,286:91-102. doi: 10.1016/j.jpowsour.2015.03.150
    [35] PARSONS R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen[J]. Transactions of the Faraday Society,1958,54:1053-1063. doi: 10.1039/tf9585401053
    [36] NORSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004,108(46):17886-17892. doi: 10.1021/jp047349j
    [37] YANG X, QIAN F, ZOU G, et al. Facile fabrication of acidified g-C3 N4/g-C3 N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J]. Applied Catalysis B Environmental,2016,193:22-35. doi: 10.1016/j.apcatb.2016.03.060
    [38] 杨绍斌, 郭鑫瑶, 董伟, 等. 盐酸活化对石墨相氮化碳(g-C3N4)结构和g-C3N4/S 锂硫电池正极复合材料性能的影响[J]. 复合材料学报, 2019, 36(1):7.

    YANG S B, GOU X Y, DONG W, et al. Effect of hydrochloric acid activation on the structure of graphitic phase carbon nitride (g-C3N4) and the performance of g-C3N4/S lithium-sulfur battery cathode composites[J]. Acta Material Compositae Sinica,2019,36(1):7(in Chinese).
    [39] JIANG G, GENG K, WU Y, et al. High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation[J]. Applied Catalysis B:Environmental,2018:366-375.
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 录用日期:  2022-05-01
  • 修回日期:  2022-04-27
  • 网络出版日期:  2022-05-28

目录

    /

    返回文章
    返回