留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多组分协同改性聚酰亚胺复合材料的高温摩擦学性能

尹宇航 赵盖 宋敬伏 丁庆军

尹宇航, 赵盖, 宋敬伏, 等. 多组分协同改性聚酰亚胺复合材料的高温摩擦学性能[J]. 复合材料学报, 2022, 39(12): 5699-5710. doi: 10.13801/j.cnki.fhclxb.20211221.001
引用本文: 尹宇航, 赵盖, 宋敬伏, 等. 多组分协同改性聚酰亚胺复合材料的高温摩擦学性能[J]. 复合材料学报, 2022, 39(12): 5699-5710. doi: 10.13801/j.cnki.fhclxb.20211221.001
YIN Yuhang, ZHAO Gai, SONG Jingfu, et al. High temperature tribological properties of polyimide composites modified by multi-components[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5699-5710. doi: 10.13801/j.cnki.fhclxb.20211221.001
Citation: YIN Yuhang, ZHAO Gai, SONG Jingfu, et al. High temperature tribological properties of polyimide composites modified by multi-components[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5699-5710. doi: 10.13801/j.cnki.fhclxb.20211221.001

多组分协同改性聚酰亚胺复合材料的高温摩擦学性能

doi: 10.13801/j.cnki.fhclxb.20211221.001
基金项目: 国家自然科学基金(52075247);航天联合基金(U2037603);固体润滑国家重点实验室开放基金(LSL-1901)
详细信息
    通讯作者:

    赵盖,博士,副教授,硕士生导师,研究方向为超声电机摩擦材料 E-mai:zhaogai@nuaa.edu.cn

  • 中图分类号: TB332

High temperature tribological properties of polyimide composites modified by multi-components

  • 摘要: 通过提高聚酰亚胺(PI)的耐热性和导热性,从而提高其高温摩擦学性能。首先选择笼形聚倍半硅氧烷(POSS)和SiO2提升其耐高温性能,碳纳米管(CNTs)和Cu粉提升热导率。然后选择分子模拟和实验相结合的方法研究各组分对其性能的影响。结果表明,POSS和SiO2能够提升PI的耐高温性能和杨氏模量,但降低了热导率和冲击强度。Cu提高了PI的耐高温性能和热导率,但降低了力学性能。低含量的CNTs改性效果良好,但高含量时表现不佳。随后根据单组分改性实验的结果设计了多组分复合改性PI复合材料。结果表明,改性配比为3wt% POSS、3wt% SiO2、0.5wt% CNTs和3wt% Cu的复合材料综合性能最优,在高温下的摩擦性能表现最佳,200℃时的摩擦系数为0.65,比纯PI降低了27.8%;磨损率为5.11×10−5 mm3/(N·m),降低了19.3%。

     

  • 图  1  聚酰亚胺(PI)复合材料模型

    Figure  1.  Models of polyimide (PI) composites

    POSS—Polysesquiloxane; CNT—Carbon nanotube

    图  2  单组分改性PI复合材料的热力学性能:(a) 玻璃化转变温度;(b) 热导率;(c) 5wt%热失重温度

    Figure  2.  Thermodynamic properties of the single-component modified PI composites: (a) Glass transition temperature; (b) Thermal conductivity; (c) Temperature of 5wt% mass loss

    图  3  单组分改性PI复合材料的力学性能:(a)杨氏模量与剪切模量;(b) 冲击强度

    Figure  3.  Mechanical properties of single-component modified PI composites: (a) Young’s modulus and shear modulus; (b) Impact strength

    图  4  单组分改性PI复合材料25℃、100℃和200℃时的摩擦系数 ((a)~(c)) 和磨损率 ((e)~(f))

    Figure  4.  Friction coefficient ((a)-(c)) and wear rate ((e)~(f)) of single-component modified PI composites at 25℃, 100℃ and 200℃

    图  5  单组分改性PI复合材料磨痕50倍显微图

    Figure  5.  50 X micrograph of wear marks of single-component modified PI composites

    图  6  多组分复合改性PI复合材料的热力学性能:(a) 玻璃化转变温度;(b) 热导率;(c) 5wt%热失重温度

    Figure  6.  Thermodynamic properties of multi-component modified PIcomposites: (a) Glass transition temperature; (b) Thermal conductivity; (c) Temperature of 5wt% mass loss

    图  7  多组分复合改性PI复合材料的力学性能:(a) 杨氏模量与剪切模量;(b) 冲击强度

    Figure  7.  Mechanical properties of multi-component modified PI composites: (a) Young’s modulus and shear modulus; (b) Impact strength

    图  8  多组分复合改性PI复合材料在25℃、100℃和200℃时的摩擦性能:(a) 摩擦系数;(b) 磨损率

    Figure  8.  Tribological properties of PI composites at 25℃, 100℃ and 200℃: (a) Friction coefficient; (b) Wear rate

    图  9  多组分复合改性PI复合材料的磨痕观测:(a) 50倍光学显微镜下;(b) 2000倍电子显微镜下

    Figure  9.  Wear marks of PI composites under 50 X (a) and 2000 X (b)

    表  1  多组分共混改性PI配方

    Table  1.   Formulation of multi-component modified PI composites

    SampleMass fraction of modification
    POSS/
    wt%
    SiO2/
    wt%
    Cu/
    wt%
    CNTs/
    wt%
    PI/
    wt%
    3wt%POSS-0.5wt%CNTs/PI3000.596.5
    3wt%SiO2-0.5wt%CNTs/PI0300.596.5
    3wt%Cu-0.5wt%CNTs/PI0030.596.5
    3wt%POSS-3wt%SiO2-0.5wt%CNTs/PI3300.593.5
    3wt%POSS-3wt%SiO2-3wt%Cu-0.5wt%CNTs/PI3330.590.5
    下载: 导出CSV
  • [1] LI S, ZHANG N, YANG Z, et al. Tailoring friction interface with surface texture for high-performance ultrasonic motor friction materials[J]. Tribology International,2019,136:412-420. doi: 10.1016/j.triboint.2019.03.072
    [2] SCHWINGENSCHLÖGL P, TENNER J, MERKLEIN M. Tribological behavior of different tool steels and surface properties under hot stamping conditions[J]. Key Engineering Materials,2018,767:212-219. doi: 10.4028/www.scientific.net/KEM.767.212
    [3] GHIOTTI A, BRUSCHI S, SGARABOTTO F, et al. Tribological performances of Zn-based coating in direct hot stamping[J]. Tribology International,2014,78:142-151. doi: 10.1016/j.triboint.2014.05.007
    [4] KIM K S, HEO J C, KIM K W. Effects of thermal treatment on the tribological characteristics of thermoplastic polymer film[J]. Thin Solid Films,2011,519(18):5988-5995. doi: 10.1016/j.tsf.2011.03.122
    [5] SONG F, YANG Z, ZHAO G, et al. Tribological performance of filled PTFE-based friction material for ultrasonic motor under different temperature and vacuum degrees[J]. Journal of Applied Polymer Science,2017,134(39):45358. doi: 10.1002/app.45358
    [6] ZHAO G, WU C, ZHANG L, et al. Friction and wear behavior of PI and PTFE composites for ultrasonic motors[J]. Polymers for Advanced Technologies,2018,29(5):1487-1496. doi: 10.1002/pat.4260
    [7] 梁瑞虹, 赵盖, 陈宁, 等. 超声电机宽温域低损耗压电与摩擦功能材料[J]. 光学精密工程, 2020, 28(4):771-781.

    LIANG Ruihong, ZHAO Gai, CHEN Ning, et al. Wide-temperature-range and low-loss piezoelectric and friction functional materials of ultrasonic motor[J]. Optics and Precision Engineering,2020,28(4):771-781(in Chinese).
    [8] 张玉迪, 于浩, 徐新宇. 无机材料改性聚酰亚胺复合材料的研究进展[J]. 合成树脂及塑料, 2021, 38(3):71-76.

    ZHANG Yudi, YU Hao, XU Xinyu. Research progress of inorganic material-modified PI[J]. China Synthetic Resin and Plastics,2021,38(3):71-76(in Chinese).
    [9] 李超, 程杰, 黄勇. 聚酰亚胺泡沫材料结构与性能研究[J]. 化工管理, 2019(15):184-185. doi: 10.3969/j.issn.1008-4800.2019.15.125

    LI Chao, CHENG Jie, HUANG Yong. Study on structure and properties of polyimide foam materials[J]. Chemical Enterprise Management,2019(15):184-185(in Chinese). doi: 10.3969/j.issn.1008-4800.2019.15.125
    [10] 刘仪, 莫松, 潘玲英, 等. 耐高温有机无机杂化聚酰亚胺树脂及其复合材料[J]. 宇航材料工艺, 2018, 48(3):1-5.

    LIU Yi, MO Song, PAN Lingying, et al. Organic-inorganic hybrid polyimides and their composites with high temperature resistance[J]. Aerospace Materials & Technology,2018,48(3):1-5(in Chinese).
    [11] WENG L, LI H X, YANG X P, et al. Preparation and characterization of silica/polyimide nanocomposite films based on water-soluble poly(amic acid) ammonium salt[J]. Polymer Composites,2017,38(4):774-781. doi: 10.1002/pc.23637
    [12] 刘少玉, 张福华, 张顶顶, 等. 聚酰亚胺纳米复合薄膜研究进展[J]. 工程塑料应用, 2021, 49(7):167-170. doi: 10.3969/j.issn.1001-3539.2021.07.029

    LIU Shaoyu, ZHANG Fuhua, ZHANG Dingding, et al. Research progress on polyimide nanocomposite films[J]. Engineering Plastics Application,2021,49(7):167-170(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.07.029
    [13] LINCOLN J E, HOUT S, FLAHERTY K, et al. High temperature organic/inorganic addition cure polyimide compo-sites, Part 1: Matrix thermal properties[J]. Journal of Applied Polymer Science,2008,107(6):3557-3567. doi: 10.1002/app.27463
    [14] LEE A. Durability characterization of POSS-based polyimides and carbon-fiber composites for air force-related applications[R]. Air Force Office of Scientific Research Annual Technical Progress Report, East Lansing, 2007.
    [15] 董晓娜, 付建平, 游胜勇, 等. 苯基POSS/有机硅树脂复合材料的制备及性能研究[J]. 中国胶粘剂, 2020, 29(10):20-23.

    DONG Xiaona, FU Jianping, YOU Shengyong, et al. Preparation and properties of phenyl-POSS/silicone resin composites[J]. China Adhesives,2020,29(10):20-23(in Chinese).
    [16] 裘进浩, 董显林, 王齐华, 等. 压电精密驱动功能部件的基础研究[J]. 中国基础科学, 2019, 21(4):1-6.

    QIU Jinhao, DONG Xianlin, WANG Qihua, et al. Fundamental research of piezoelectric precision dricing systems[J]. China Basic Science,2019,21(4):1-6(in Chinese).
    [17] 梁晨光, 张凤婷, 胡新苒. 高分子聚合材料在超声电机弹性体中的研究与应用[J]. 现代制造技术与装备, 2020, 56(9):46-48, 51.

    LIANG Chenguang, ZHANG Fengting, HU Xinran. Research and applications of polymer-based elastomer for ultrasonic motors[J]. Modern Manufacturing Technology and Equipment,2020,56(9):46-48, 51(in Chinese).
    [18] ZHU C, CHU X, YUAN S, et al. Development of an ultraso-nic linear motor with ultra-positioning capability and four driving feet[J]. Ultrasonics,2016,72:66-72. doi: 10.1016/j.ultras.2016.07.010
    [19] 王春博. 高导热聚酰亚胺、聚芳醚酮复合材料制备及性能研究 [D]. 长春: 吉林大学, 2020.

    WANG Chunbo. Preparation and properties of high thermal conductive polyimide, poly(aryl ether ketone) composites[D]. Changchun: University of Jilin, 2020(in Chinese).
    [20] HONG J, CHOI H S, LEE K S, et al. Thermal properties of poly(dimethyl siloxane) nanocomposite filled with silicon carbide and multiwall carbon nanotubes[J]. Polymer International,2012,61(4):639-645. doi: 10.1002/pi.3224
    [21] LEUNG S N. Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships[J]. Composites Part B: Engineering,2018,150:78-92. doi: 10.1016/j.compositesb.2018.05.056
    [22] 张萌萌, 贾广跃, 熊丽萍, 等. 碳纳米管/聚合物复合材料的导热模型进展[J]. 精细化工, 2020, 37(6):1081-1087, 1106.

    ZHANG Mengmeng, JIA Guangyue, XIONG Liping, et al. Progress on thermal conductivity model of carbon nano-tube polymer composites[J]. Fine Chemicals,2020,37(6):1081-1087, 1106(in Chinese).
    [23] 童铭康, 吴秀平, 戚嵘嵘, 等. 铜粉填充UHMWPE导热材料性能的研究[J]. 工程塑料应用, 2010, 38(7):8-11. doi: 10.3969/j.issn.1001-3539.2010.07.002

    TONG Mingkang, WU Xiuping, QI Rongrong, et al. Study on properties of copper powder filling UHMWPE heat conduction material[J]. Engineering Plastics Application,2010,38(7):8-11(in Chinese). doi: 10.3969/j.issn.1001-3539.2010.07.002
    [24] 解挺, 林子钧, 陈刚, 等. Cu粉含量对PTFE基复合材料导热性能影响的数值分析[J]. 金属功能材料, 2010, 17(2):52-56.

    XIE Ting, LIN Zijun, CHEN Gang, et al. Numerical analysis of influence of Cu particle content on thermal conductivity of PTFE-based composites[J]. Metallic Functional Materials,2010,17(2):52-56(in Chinese).
    [25] LIAO Q, LIU Z, LIU W, et al. Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites[J]. Scientific Reports,2015,5(1):16543. doi: 10.1038/srep16543
    [26] JIANG Q, WU L. Property enhancement of aligned carbon nanotube/polyimide composite by strategic prestraining[J]. Journal of Reinforced Plastics and Composites,2016,35(4):287-294. doi: 10.1177/0731684415614086
    [27] LIN J L, SU S M, HE Y B, et al. Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes[J]. New Carbon Materials,2020,35(1):66-72. doi: 10.1016/S1872-5805(20)60476-0
    [28] FATEMI S M, FATEMI S M, FOROUTAN M, et al. Recent developments concerning the dispersion of carbon nano-tubes in surfactant/polymer systems by MD simulation[J]. Journal of Nanostructure in Chemistry,2016,6(1):29-40. doi: 10.1007/s40097-015-0175-9
    [29] LI Y, WANG S, WANG Q, et al. Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: A molecular dynamics study[J]. Carbon (New York),2018,129:504-509.
    [30] LIU J, WU S, ZHANG L, et al. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement[J]. Physical Chemistry Chemical Physics: PCCP,2011,13(2):518-529. doi: 10.1039/C0CP00297F
    [31] LI Y, WANG S, WANG Q, et al. Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber)/carbon nanotube composites[J]. Composites Part B: Engineering,2016,97:62-67. doi: 10.1016/j.compositesb.2016.04.053
    [32] HOSSEINI A, NASRABADI M N, ESFANDIARPOUR A. Effect of carbon nanotube on radiation resistance of CNT-Cu nanocomposite: MD simulation[J]. Journal of Materials Science,2020,55(10):4311-4320. doi: 10.1007/s10853-019-04309-7
    [33] 雷浩, 赵盖, 尹宇航, 等. 氮化碳增强聚四氟乙烯摩擦学性能的分子动力学模拟[J]. 摩擦学学报, 2021, 41(2):223-229.

    LEI Hao, ZHAO Gai, YIN Yuhang, et al. Molecular dynamics simulation on the tribological properties of carbo nitride reinforced PTFE[J]. Tribology,2021,41(2):223-229(in Chinese).
    [34] SUN H. COMPASS: An ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B,1998,102(38):7338-7364. doi: 10.1021/jp980939v
    [35] RIGBY D, SUN H, EICHINGER B E. Computer simulations of poly(ethylene oxide): Force field, PVT diagram and cyclization behaviour[J]. Polymer International,1997,44(3):311-330. doi: 10.1002/(SICI)1097-0126(199711)44:3<311::AID-PI880>3.0.CO;2-H
    [36] ASTM. Standard test method for pin abrasion testing: ASTM G132-96[S]. West Conshohocken: American Society for Testing and Materials, 1996.
    [37] 中国国家标准化管理委员会. 塑料简支梁冲击部分的测定: GB/T 1043—2018[S]. 北京: 中国标准出版社. 2018.

    Standardization Administration of China. Plastics—Determination of charpy impact properties: GB/T 1043—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [38] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究[J]. 物理学报, 2013, 62(18):366-374.

    SUN Weifeng, WANG Xuan. Molecular dynamics simulation of polyimide/copper nanoparticles composites[J]. Acta Physica Sinica,2013,62(18):366-374(in Chinese).
    [39] ZHANG D, WANG S X, LIU G S, et al. Thermal conductivity of polyimide resin-based composite with Cu fibers[J]. Materials Science Forum, 2016, 848: 43-48.
    [40] 林荣会, 王丰元, 李淑玉, 等. 纳米铜改性酚醛树脂对摩擦材料摩擦磨损性能的影响[J]. 非金属矿, 2007(4):68-70. doi: 10.3969/j.issn.1000-8098.2007.04.022

    LIN Ronghui, WANG Fengyuan, LI Shuyu, et al. Affection of phenolic resin modified by copper nanoparticles on friction & wear characteristics of friction materials[J]. Non-Metallic Mines,2007(4):68-70(in Chinese). doi: 10.3969/j.issn.1000-8098.2007.04.022
    [41] 王顺, 王康宁, 陈琦, 等. 高度可溶性聚酰亚胺增韧萘型环氧树脂[J]. 工程塑料应用, 2021, 49(6):8-15. doi: 10.3969/j.issn.1001-3539.2021.06.002

    WANG Shun, WANG Kangning, CHEN Qi, et al. Naphtalene type epoxy resin reinforced with highly soluble polyimide[J]. Engineering Plastics Application,2021,49(6):8-15(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.06.002
    [42] YONG L, WEI W, YU C, et al. The effects of polyamic acid on curing behavior, thermal stability, and mechanical properties of epoxy/DDS system[J]. Journal of Applied Polymer Science,2013,127(4):3213-3220. doi: 10.1002/app.37759
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  846
  • HTML全文浏览量:  412
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-12-01
  • 录用日期:  2021-12-11
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回