Preparation of coated honeycomb catalyst and carbon monoxide catalytic removal of flue gas
-
摘要:
工业烟气一氧化碳(CO)的催化净化对高活性耐久涂覆型催化剂的需求日渐迫切。涂覆型催化剂的实际应用可能伴随着快速的烟气流动、剧烈的温度波动和强烈的机械振动,催化剂脱落会造成阀门及后端设备堵塞,并导致催化效率衰减,而且传统商用铜锰催化剂在含水环境中容易失活。上述问题很大程度限制了烧结烟气CO催化净化技术的推广应用。本文将多元金属氧化物催化剂配置成浆液并涂覆到堇青石蜂窝陶瓷载体上制得了一种陶瓷基复合材料(多元金属/堇青石涂覆型催化剂)。浆液中聚乙烯醇的存在提供了空间位阻,以分散颗粒和阻碍颗粒团聚,并使SiO2在催化剂周围均匀分布,提高了悬浮液的分散稳定性,制备出了均匀致密的涂层。较低的焙烧温度能减少催化剂团聚并使催化剂具有较低的还原温度、较高的Mn4+/Mn3+与Oads/Olatt比值,使其在含水条件中能长期高效催化CO。优选涂覆型催化剂经过60 min超声后的涂层脱落率仅为1.25%;在7500 h-1空速、1%CO、8%水蒸气含量、110℃下可达到99%CO转化率,并在72 h的稳定性测试内保持高催化效率;在基于某钢厂实际脱硫后的烧结烟气中,720 h后催化效率可稳定在82%以上。 CO催化效率及稳定性曲线 Abstract: Carbon monoxide (CO) emission from iron and steel sintering flue gas has been paid more and more attention. However, there is a lack of efficient and practical CO removal technology for large flow flue gas. A series of coated catalysts were prepared by coating powder catalyst on cordierite honeycomb ceramic supports. The physicochemical properties of the coated catalysts were analyzed based on a series of characterization techniques, and the catalytic performance of CO was evaluated under actual sintering flue gas conditions. The results show that 1‰ polyvinyl alcohol content of slurry and 300℃ calcination could promote the uniformity of powder catalyst distribution on the surface of the support, and improve the ratio of Mn4+/Mn3+and Oads/Olatt; The coating shedding rate of the optimized coated catalyst was 1.25% after 60 min ultrasonic vibration; The catalytic efficiency of 99% CO can be achieved at 7500 h−1 space speed, 1%CO, 8% water vapour content and 110℃, and remains stable within 72 h ;Based on the actual desulfurization of sintering flue gas in a steel plant, the efficiency can be stable above 82% after 720 h. The study can provide reference for the application of CO removal technology for industrial flue gas.-
Key words:
- coated catalyst /
- coating /
- carbon monoxide /
- honeycomb ceramic support /
- calcination temperature /
- shedding rate
-
表 1 粉末与涂覆型催化剂的XPS参数
Table 1. XPS parameters of powder and coated catalysts
Number of samples Binding energy/eV Mn4+/Mn3+ Oads/Olatt Mn3+
2 p3/2Mn4+
2 p3/2Cu2+
2 p3/2Oads
1 sOlatt
1 sPC 642 643.8 933.6 531.4 529.6 0.60 0.80 CC1300 641.9 643.9 933.9 532.6 529.6 0.43 3.81 CC1400 641.9 644.0 933.5 532.8 529.8 0.38 3.01 CC1500 641.8 643.8 933.5 532.8 529.8 0.32 2.79 CC0300 641.8 643.9 933.7 532.8 529.6 0.43 3.25 CC1300* 642.5 643.8 934.4 532.8 529.6 0.82 3.17 表 2 涂覆型催化剂的涂层脱落率
Table 2. Coating shedding rate of coated catalyst
Samples Slurry polyvinyl
alcohol content/‰Calcination temperature/℃ Sheddin-g rate/% CC1300 1 300 1.25 CC1400 1 400 1.97 CC1500 1 500 3.03 CC0300 0 300 15.78 CC0.5300 0.5 300 5.67 CC1.5300 1.5 300 3.42 -
[1] 刘启宪. Pd/OMS-2催化剂的制备及其低温CO催化氧化性能研究[D]. 昆明理工大学, 2017.LIU Q X. Synthesis of OMS-2 supported Pd and their low-temperature CO catalytic oxidation[D]. Kunming University of Science and Technology, 2017(in Chinese). [2] ROYER D S and DUPREZ D D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides[J]. ChemCatChem,2011,3(1):24-65. doi: 10.1002/cctc.201000378 [3] MORGAN K, COLE K J, GOGUET A, et al. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts[J]. Journal of Catalysis,2010,276:38-48. doi: 10.1016/j.jcat.2010.08.013 [4] 周昊, 成毅, 周明熙, 等. Pt涂层蜂窝金属和Ce改性Fe2O3催化CO的性能对比[J]. 工程科学学报, 2020, 42(1):70-77.ZHOU H, CHENG Y, ZHOU M X, et al. Analysis of CO catalytic oxidation by Pt-loading catalyst and Ce-doped Fe2O3[J]. Chinese Journal of Engineering,2020,42(1):70-77(in Chinese). [5] 李子宜, 卞文博, 侯环宇, 等. 铜锰基整体式催化剂对烧结烟气CO净化特性[J]. 中国环境科学, 2022, 42(9):4052-4058. doi: 10.3969/j.issn.1000-6923.2022.09.010LI Z Y, BIAN W B, HOU H Y, et al. Study on CO purification characteristics of copper-manganese-based monolithic catalyst for sintering flue gas[J]. China Environmental Science,2022,42(9):4052-4058(in Chinese). doi: 10.3969/j.issn.1000-6923.2022.09.010 [6] TANG W X, LU X X, LIU F Y, et al. Ceria-based nanoflake arrays integrated on 3 D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst[J]. Applied Catalysis B:Environmental,2019,245:623-634. doi: 10.1016/j.apcatb.2019.01.028 [7] 皇甫林, 李长明, 王超, 等. 硅系黏结剂对涂覆型蜂窝体催化剂性能的影响[J]. 过程工程学报, 2020, 20(4):484-492. doi: 10.12034/j.issn.1009-606X.219200HUANG P L, LI C M, WANG C, et al. Effect of silicon-based binder on the performance of coated honeycomb catalyst[J]. The Chinese Journal of Process Engineering,2020,20(4):484-492(in Chinese). doi: 10.12034/j.issn.1009-606X.219200 [8] TISCORNIA I S, LACOSTE A M, GóMEZ L E, etc. CuO–CeO2/SiO2 coating on ceramic monolith: Effect of the nature of the catalyst support on CO preferential oxidation in a H2-rich stream, International Journal of Hydrogen Energy, 2020, 45(11): 6636-6650. [9] XIAO B, ZHAO K F, ZHANG L, et al. A green and facile synthesis of Co3O4 monolithic catalyst with enhanced total oxidation of propane performance[J]. Catalysis Communications,2018,116:1-4. doi: 10.1016/j.catcom.2018.07.013 [10] MITRA B and KUNZRU D. Washcoating of Different Zeolites on Cordierite Monoliths[J]. Journal of the American Ceramic Society,2008,91(1):64-70. [11] WU D F, KONG S S, ZHANG H, et al. Mechanical stability of monolithic catalysts: Factors affecting washcoat adhesion and cohesion during preparation[J]. AIChE Journal,2014,60(8):2765-2773. doi: 10.1002/aic.14480 [12] KUCHARCZYK B. Catalytic Oxidation of Carbon Monoxide on Pd-Containing LaMnO3 Perovskites[J]. Catalysis Letters,2015,145(6):1237-1245. doi: 10.1007/s10562-015-1518-3 [13] XU X L, SUN X F, HAN H, et al. Improving water tolerance of Co3O4 by SnO2 addition for CO oxidation[J]. Applied Surface Science,2015,355(C):1254-1260. [14] LIU Y, GUO Y, PENG H G, et al. Modifying Hopcalite catalyst by SnO2 addition: An effective way to improve its moisture tolerance and activity for low temperature CO oxidation[J]. Applied Catalysis A, General,2016,525:204-214. doi: 10.1016/j.apcata.2016.07.023 [15] CHRISTOPHER J, H T S, ANDREW B, et al. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Chemical communications (Cambridge, England),2008:1707-9. [16] 张磊, 王胜, 汪明哲, 等. CoMnOx/Al2O3/monolith整体催化剂的制备及其催化臭氧分解性能[J]. 工业催化, 2020, 28(1):17-23.ZHANG L, WANG S, WANG M Z, et al. Preparation of CoMnOx/Al2O3/monolith catalyst for ozone elimination[J]. INDUSTRIAL CATALYSIS,2020,28(1):17-23(in Chinese). [17] HUANG C C, HUANG Y J, WANG H S, et al. A well-dispersed catalyst on porous silicon micro-reformer for enhancing adhesion in the catalyst-coating process[J]. International Journal of Hydrogen Energy,2014,39(15):7753-7764. doi: 10.1016/j.ijhydene.2014.03.029 [18] CHEN H, WANG J H, LI H, et al. Low temperature combustion of ethylene in a carbon dioxide stream over a cordierite monolith-supported Cu–Mn Hopcalite catalyst[J]. Applied Catalysis A, General,2012,427-428:73-78. doi: 10.1016/j.apcata.2012.03.035 [19] AGRAFIOTIS C and TSETSEKOU A. The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats[J]. Journal of the European Ceramic Society,2000,20(7):815-824. doi: 10.1016/S0955-2219(99)00218-6 [20] ZHOU Y, LIU X Y, WANG K, et al. Porous Cu-Mn-O catalysts fabricated by spray pyrolysis method for efficient CO oxidation[J]. Results in Physics,2019,12:1893-1900. doi: 10.1016/j.rinp.2019.01.049 [21] CLARKE T J and KONDRAT S A and TAYLOR S H. Total oxidation of naphthalene using copper manganese oxide catalysts[J]. Catalysis Today,2015,258:610-615. doi: 10.1016/j.cattod.2015.01.032 [22] 韩朝辉, 竺培显, 郭佳鑫, 等. 二组元(RuO2-TiO2)及三组元(RuO2-SnO2-TiO2)Ti阳极涂层的微观组织对其电化学性能的影响[J]. 复合材料学报, 2013, 30(6):121-126. doi: 10.3969/j.issn.1000-3851.2013.06.018HAN Z H, ZHU P X, GUO J X, et al. Effects of microstructures of Ti anode coating with two constituents(RuO2-SnO2-TiO2) on the electrochemical properties[J]. Acta Materiae Compositae Sinica,2013,30(6):121-126(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.018 [23] LONG G Y, CHEN M X, LI Y J, et al. One-pot synthesis of monolithic Mn-Ce-Zr ternary mixed oxides catalyst for the catalytic combustion of chlorobenzene[J]. Chemical Engineering Journal,2019,360:964-973. doi: 10.1016/j.cej.2018.07.091 [24] 吴光锐, 王德军, 侯亚璐, 等. Fe3O4/MnO2磁性复合氧化物催化剂的制备及性能[J]. 复合材料学报, 2019, 36(1):147-158.WU G R, WANG D J, HOU Y L, et al. Preparation and performance of Fe3O4/MnO2 magnetic bimetal oxide catalyst[J]. Acta Materiae Compositae Sinica,2019,36(1):147-158(in Chinese). [25] WEI L, CUI S P, GUO H X, et al. The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO[J]. Applied Surface Science,2019,483:391-398. doi: 10.1016/j.apsusc.2019.03.280 [26] LIANG Z D, GAO P, TANG Z Y, et al. Three dimensional porous Cu-Zn/Al foam monolithic catalyst for CO2 hydrogenation to methanol in microreactor[J]. Journal of CO2 Utilization,2017,21:191-199. doi: 10.1016/j.jcou.2017.05.023 [27] DEY S, DHAL G C, MOHAN D, et al. Low-temperature complete oxidation of CO over various manganese oxide catalysts[J]. Atmospheric Pollution Research,2018,9(4):755-763. doi: 10.1016/j.apr.2018.01.020 [28] LI X, LI Q, LI W, et al. Enhancement of SCR performance of monolithic Mn–Ce/Al2O3/cordierite catalysts by using modified deposition precipitation method[J]. Asia-Pacific Journal of Chemical Engineering,2019,14(4):2318-2332. [29] RAMESH K, CHEN L W, CHEN F X, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts[J]. Catalysis Today,2008,131:477-482. doi: 10.1016/j.cattod.2007.10.061 [30] SHIKINA N V, YASHNIK S A, GAVRILOVA A A, et al. Effect of Glycine Addition on Physicochemical and Catalytic Properties of Mn, Mn–La and Mn–Ce Monolithic Catalysts Prepared by Solution Combustion Synthesis[J]. Catalysis Letters,2019,149(9):2535-2551. doi: 10.1007/s10562-019-02841-4 [31] WANG S, YAN L H, ZHAO Y S, et al. Honeycomb porous carbon frameworks from wheat flour as supports for CuxO-CeO2 monolithic catalysts[J]. Applied Surface Science,2019,464:294-300. doi: 10.1016/j.apsusc.2018.09.088 [32] LUO J J, CHU W, XU H Y, et al. Low-temperature CO oxidation over CuO-CeO2/SiO2 catalysts: Effect of CeO2 content and carrier porosity[J]. Journal of Natural Gas Chemistry,2010,19(4):355-361. doi: 10.1016/S1003-9953(09)60088-8 [33] QI J Z, SUN Y P, XIE Z L, et al. Development of Cu foam-based Ni catalyst for solar thermal reforming of methane with carbon dioxide[J]. Journal of Energy Chemistry,2015,24(6):786-793. doi: 10.1016/j.jechem.2015.10.001 [34] Wiśniewska M, Chibowski S, Urban T, et al. Investigation of the alumina properties with adsorbed polyvinyl alcohol[J]. Journal of Thermal Analysis and Calorimetry,2010,103(1):329-337. [35] 张立伟, 陈森凤, 沈毅, 等精细氧化铝陶瓷水基凝胶注模成型工艺[J]. 电子元件与材料, 2005(04): 44-47.ZHANG L W, CHEN S F, SHEN Y, et al. Optimization Research on Forming of Fine Alumina Ceramic by Hydrous Gel-casting[J]. ELECTRONIC COMPONENTS & MATERIALS, 2005(04): 44-47(in Chinese). [36] MO S, HE H, REN Q M, et al. Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation[J]. Journal of Environmental Sciences,2018,75:136-144. [37] 卢晗锋, 黄金星, 周瑛, 等. 沉淀剂对Cu-Mn-Ce复合氧化物催化剂结构和性能的影响[J]. 化工学报, 2015, 66(6):2105-2111. doi: 10.11949/j.issn.0438-1157.20141930LU H F, HUANG J X, Zhou Y, et al. Effect of precipitants on structure and performance of Cu-Mn-Ce mixed oxide catalysts[J]. CIESC Journal,2015,66(6):2105-2111(in Chinese). doi: 10.11949/j.issn.0438-1157.20141930 -