留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涂覆型蜂窝体催化剂的制备与烟气一氧化碳催化净化性能

刘应书 张璇 卞文博 姜理俊 刘文海 侯环宇 孙方舟 杨雄 李子宜

刘应书, 张璇, 卞文博, 等. 涂覆型蜂窝体催化剂的制备与烟气一氧化碳催化净化性能[J]. 复合材料学报, 2023, 40(8): 4539-4548. doi: 10.13801/j.cnki.fhclxb.20221205.003
引用本文: 刘应书, 张璇, 卞文博, 等. 涂覆型蜂窝体催化剂的制备与烟气一氧化碳催化净化性能[J]. 复合材料学报, 2023, 40(8): 4539-4548. doi: 10.13801/j.cnki.fhclxb.20221205.003
LIU Yingshu, ZHANG Xuan, BIAN Wenbo, et al. Preparation of coated honeycomb catalyst and carbon monoxide catalytic removal of flue gas[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4539-4548. doi: 10.13801/j.cnki.fhclxb.20221205.003
Citation: LIU Yingshu, ZHANG Xuan, BIAN Wenbo, et al. Preparation of coated honeycomb catalyst and carbon monoxide catalytic removal of flue gas[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4539-4548. doi: 10.13801/j.cnki.fhclxb.20221205.003

涂覆型蜂窝体催化剂的制备与烟气一氧化碳催化净化性能

doi: 10.13801/j.cnki.fhclxb.20221205.003
基金项目: 国家自然科学基金(21808012);河钢集团有限公司重点科技项目(HG2020204-1)
详细信息
    通讯作者:

    李子宜,博士,教授,博士生导师,研究方向为气体分离与净化 E-mail: ziyili@ustb.edu.cn

  • 中图分类号: TQ426.0;O643.0;TB331

Preparation of coated honeycomb catalyst and carbon monoxide catalytic removal of flue gas

Funds: National Natural Science Foundation of China (21808012); Key Technology Project of HBIS Group CO., LTD. (HG2020204-1)
  • 摘要: 钢铁烧结烟气CO排放问题日渐被广泛关注,然而当前缺乏面向大流量烟气的高效实用型CO净化技术。将粉末催化剂涂覆到堇青石蜂窝陶瓷载体上制得了一系列涂覆型催化剂,基于系列表征技术分析了涂覆型催化剂的理化特性,并在实际烧结烟气条件下评测了CO催化性能。结果表明:浆液1wt‰聚乙烯醇含量与300℃焙烧可促进粉末催化剂在载体表面分布的均匀性,并提高了Mn4+/Mn3+与Oads/Olatt比值;优选涂覆型催化剂经过60 min超声后的涂层脱落率为1.25%;在7500 h−1空速、1%CO、8%水蒸气含量、110℃下可达到99%CO转化率,并在72 h内保持稳定;在基于某钢厂实际脱硫后的烧结烟气中,720 h后效率可稳定在82%以上。研究可为工业烟气CO净化技术的应用提供参考。

     

  • 图  1  催化性能评估测试系统

    MFC—Mass flow controller; GC-FID—Flame ionization detector

    Figure  1.  Catalytic performance evaluation test system

    图  2  粉末与涂覆型催化剂的XRD图谱

    Figure  2.  XRD patterns of powder and coated catalysts

    图  3  浆液的照片与SEM图像和涂覆型催化剂的SEM及EDS图像

    Figure  3.  Photos and SEM images of slurries and SEM and EDS images of coated catalysts

    图  4  粉末与涂覆型催化剂的Ar吸脱附等温线 (a) 和孔径分布 (b)

    Figure  4.  Ar adsorption-desorption isotherms (a) and pore-size distribution (b) of powder and coated catalysts

    dV/dD—Differential pore volume

    图  5  粉末与涂覆型催化剂的XPS图谱

    Figure  5.  XPS spectra of powder and coated catalysts

    图  6  粉末与涂覆型催化剂的程序升温还原(H2-TPR)图谱

    Figure  6.  Temperature programmed reduction (H2-TPR) spectra of powder and coated catalysts

    图  7  浆液性质及涂层脱落率

    Figure  7.  Slurry properties and coating shedding rate

    图  8  CO催化效率及稳定性曲线

    Figure  8.  CO catalytic efficiency and stability curves

    图  9  CC1300的现场CO催化效率稳定性曲线

    Figure  9.  Stability curve of in-situ CO catalytic efficiency of CC1300

    表  1  粉末与涂覆型催化剂的XPS参数

    Table  1.   XPS parameters of powder and coated catalysts

    Number of sampleBinding energy/eVMn4+/Mn3+Oads/Olatt
    Mn3+2p3/2Mn4+2p3/2Cu2+2p3/2Oads1sOlatt1s
    PC642.0643.8933.6531.4529.60.600.80
    CC1300641.9643.9933.9532.6529.60.433.81
    CC1400641.9644.0933.5532.8529.80.383.01
    CC1500641.8643.8933.5532.8529.80.322.79
    CC0300641.8643.9933.7532.8529.60.433.25
    CC1300*642.5643.8934.4532.8529.60.823.17
    下载: 导出CSV

    表  2  涂覆型催化剂的涂层脱落率

    Table  2.   Coating shedding rate of coated catalyst

    SampleSlurry polyvinyl
    alcohol content/wt‰
    Calcination temperature/℃Shedding rate/%
    CC1300 1 300 1.25
    CC1400 1 400 1.97
    CC1500 1 500 3.03
    CC0300 0 300 15.78
    CC0.5300 0.5 300 5.67
    CC1.5300 1.5 300 3.42
    下载: 导出CSV
  • [1] 刘启宪. Pd/OMS-2催化剂的制备及其低温CO催化氧化性能研究[D]. 昆明: 昆明理工大学, 2017.

    LIU Qixian. Synthesis of OMS-2 supported Pd and their low-temperature CO catalytic oxidation[D]. Kunming: Kunming University of Science and Technology, 2017(in Chinese).
    [2] ROYER D S, DUPREZ D D. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. ChemCatChem,2011,3(1):24-65. doi: 10.1002/cctc.201000378
    [3] MORGAN K, COLE K J, GOGUET A, et al. TAP studies of CO oxidation over CuMnOx and Au/CuMnOx catalysts[J]. Journal of Catalysis,2010,276:38-48. doi: 10.1016/j.jcat.2010.08.013
    [4] 周昊, 成毅, 周明熙, 等. Pt涂层蜂窝金属和Ce改性Fe2O3催化CO的性能对比[J]. 工程科学学报, 2020, 42(1):70-77.

    ZHOU Hao, CHENG Yi, ZHOU Mingxi, et al. Analysis of CO catalytic oxidation by Pt-loading catalyst and Ce-doped Fe2O3[J]. Chinese Journal of Engineering,2020,42(1):70-77(in Chinese).
    [5] 李子宜, 卞文博, 侯环宇, 等. 铜锰基整体式催化剂对烧结烟气CO净化特性[J]. 中国环境科学, 2022, 42(9):4052-4058. doi: 10.3969/j.issn.1000-6923.2022.09.010

    LI Ziyi, BIAN Wenbo, HOU Huanyu, et al. Study on CO purification characteristics of copper-manganese-based monolithic catalyst for sintering flue gas[J]. China Envi-ronmental Science,2022,42(9):4052-4058(in Chinese). doi: 10.3969/j.issn.1000-6923.2022.09.010
    [6] TANG W X, LU X X, LIU F Y, et al. Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst[J]. Applied Catalysis B: Environmental,2019,245:623-634. doi: 10.1016/j.apcatb.2019.01.028
    [7] 皇甫林, 李长明, 王超, 等. 硅系黏结剂对涂覆型蜂窝体催化剂性能的影响[J]. 过程工程学报, 2020, 20(4):484-492. doi: 10.12034/j.issn.1009-606X.219200

    HUANGPU Lin, LI Changming, WANG Chao, et al. Effect of silicon-based binder on the performance of coated honeycomb catalyst[J]. The Chinese Journal of Process Engineering,2020,20(4):484-492(in Chinese). doi: 10.12034/j.issn.1009-606X.219200
    [8] TISCORNIA I S, LACOSTE A M, GÓMEZ L E, et al. CuO-CeO2/SiO2 coating on ceramic monolith: Effect of the nature of the catalyst support on CO preferential oxidation in a H2-rich stream[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6636-6650.
    [9] XIAO B, ZHAO K F, ZHANG L, et al. A green and facile synthesis of Co3O4 monolithic catalyst with enhanced total oxidation of propane performance[J]. Catalysis Communications,2018,116:1-4. doi: 10.1016/j.catcom.2018.07.013
    [10] MITRA B, KUNZRU D. Washcoating of different zeolites on cordierite monoliths[J]. Journal of the American Ceramic Society,2008,91(1):64-70.
    [11] WU D F, KONG S S, ZHANG H, et al. Mechanical stability of monolithic catalysts: Factors affecting washcoat adhesion and cohesion during preparation[J]. AIChE Journal,2014,60(8):2765-2773. doi: 10.1002/aic.14480
    [12] KUCHARCZYK B. Catalytic oxidation of carbon monoxide on Pd-containing LaMnO3 perovskites[J]. Catalysis Letters,2015,145(6):1237-1245. doi: 10.1007/s10562-015-1518-3
    [13] XU X L, SUN X F, HAN H, et al. Improving water tolerance of Co3O4 by SnO2 addition for CO oxidation[J]. Applied Surface Science,2015,355(C):1254-1260.
    [14] LIU Y, GUO Y, PENG H G, et al. Modifying hopcalite catalyst by SnO2 addition: An effective way to improve its moisture tolerance and activity for low temperature CO oxidation[J]. Applied Catalysis A: General,2016,525:204-214. doi: 10.1016/j.apcata.2016.07.023
    [15] CHRISTOPHER J, STUART H T, ANDREW B, et al. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Chemical Communications,2008,14:1707-1709.
    [16] 张磊, 王胜, 汪明哲, 等. CoMnOx/Al2O3/monolith整体催化剂的制备及其催化臭氧分解性能[J]. 工业催化, 2020, 28(1):17-23.

    ZHANG Lei, WANG Sheng, WANG Mingzhe, et al. Preparation of CoMnOx/Al2O3/monolith catalyst for ozone elimination[J]. Industrial Catalysis,2020,28(1):17-23(in Chinese).
    [17] HUANG C C, HUANG Y J, WANG H S, et al. A well-dispersed catalyst on porous silicon micro-reformer for enhancing adhesion in the catalyst-coating process[J]. International Journal of Hydrogen Energy,2014,39(15):7753-7764. doi: 10.1016/j.ijhydene.2014.03.029
    [18] CHEN H, WANG J H, LI H, et al. Low temperature combustion of ethylene in a carbon dioxide stream over a cordierite monolith-supported Cu-Mn hopcalite catalyst[J]. Applied Catalysis A: General,2012,427-428:73-78. doi: 10.1016/j.apcata.2012.03.035
    [19] AGRAFIOTIS C, TSETSEKOU A. The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats[J]. Journal of the European Ceramic Society,2000,20(7):815-824. doi: 10.1016/S0955-2219(99)00218-6
    [20] ZHOU Y, LIU X Y, WANG K, et al. Porous Cu-Mn-O catalysts fabricated by spray pyrolysis method for efficient CO oxidation[J]. Results in Physics,2019,12:1893-1900. doi: 10.1016/j.rinp.2019.01.049
    [21] CLARKE T J, KONDRAT S A, TAYLOR S H. Total oxidation of naphthalene using copper manganese oxide catalysts[J]. Catalysis Today,2015,258:610-615. doi: 10.1016/j.cattod.2015.01.032
    [22] 韩朝辉, 竺培显, 郭佳鑫, 等. 二组元(RuO2-TiO2)及三组元(RuO2-SnO2-TiO2)Ti阳极涂层的微观组织对其电化学性能的影响[J]. 复合材料学报, 2013, 30(6):121-126. doi: 10.3969/j.issn.1000-3851.2013.06.018

    HAN Zhaohui, ZHU Peixian, GUO Jiaxin, et al. Effects of microstructures of Ti anode coating with two constituents (RuO2-SnO2-TiO2) on the electrochemical properties[J]. Acta Materiae Compositae Sinica,2013,30(6):121-126(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.018
    [23] LONG G Y, CHEN M X, LI Y J, et al. One-pot synthesis of monolithic Mn-Ce-Zr ternary mixed oxides catalyst for the catalytic combustion of chlorobenzene[J]. Chemical Engineering Journal,2019,360:964-973. doi: 10.1016/j.cej.2018.07.091
    [24] 吴光锐, 王德军, 侯亚璐, 等. Fe3O4/MnO2磁性复合氧化物催化剂的制备及性能[J]. 复合材料学报, 2019, 36(1):147-158.

    WU Guangrui, WANG Dejun, HOU Yalu, et al. Preparation and performance of Fe3O4/MnO2 magnetic bimetal oxide catalyst[J]. Acta Materiae Compositae Sinica,2019,36(1):147-158(in Chinese).
    [25] WEI L, CUI S P, GUO H X, et al. The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO[J]. Applied Surface Science,2019,483:391-398. doi: 10.1016/j.apsusc.2019.03.280
    [26] LIANG Z D, GAO P, TANG Z Y, et al. Three dimensional porous Cu-Zn/Al foam monolithic catalyst for CO2 hydrogenation to methanol in microreactor[J]. Journal of CO2 Utilization,2017,21:191-199. doi: 10.1016/j.jcou.2017.05.023
    [27] DEY S, DHAL G C, MOHAN D, et al. Low-temperature complete oxidation of CO over various manganese oxide catalysts[J]. Atmospheric Pollution Research,2018,9(4):755-763. doi: 10.1016/j.apr.2018.01.020
    [28] LI X, LI Q, LI W, et al. Enhancement of SCR performance of monolithic Mn-Ce/Al2O3/cordierite catalysts by using modified deposition precipitation method[J]. Asia-Pacific Journal of Chemical Engineering,2019,14(4):2318-2332.
    [29] RAMESH K, CHEN L W, CHEN F X, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts[J]. Catalysis Today,2008,131:477-482. doi: 10.1016/j.cattod.2007.10.061
    [30] SHIKINA N V, YASHNIK S A, GAVRILOVA A A, et al. Effect of glycine addition on physicochemical and catalytic pro-perties of Mn, Mn-La and Mn-Ce monolithic catalysts prepared by solution combustion synthesis[J]. Catalysis Letters,2019,149(9):2535-2551. doi: 10.1007/s10562-019-02841-4
    [31] WANG S, YAN L H, ZHAO Y S, et al. Honeycomb porous carbon frameworks from wheat flour as supports for CuxO-CeO2 monolithic catalysts[J]. Applied Surface Science,2019,464:294-300. doi: 10.1016/j.apsusc.2018.09.088
    [32] LUO J J, CHU W, XU H Y, et al. Low-temperature CO oxidation over CuO-CeO2/SiO2 catalysts: Effect of CeO2 content and carrier porosity[J]. Journal of Natural Gas Chemistry,2010,19(4):355-361. doi: 10.1016/S1003-9953(09)60088-8
    [33] QI J Z, SUN Y P, XIE Z L, et al. Development of Cu foam-based Ni catalyst for solar thermal reforming of methane with carbon dioxide[J]. Journal of Energy Chemistry,2015,24(6):786-793. doi: 10.1016/j.jechem.2015.10.001
    [34] WIŚNIEWSKA M, CHIBOWSKI S, URBAN T, et al. Investigation of the alumina properties with adsorbed polyvinyl alcohol[J]. Journal of Thermal Analysis and Calorimetry,2010,103(1):329-337.
    [35] 张立伟, 陈森凤, 沈毅, 等. 精细氧化铝陶瓷水基凝胶注模成型工艺[J]. 电子元件与材料, 2005(4): 44-47.

    ZHANG Liwei, CHEN Senfeng, SHEN Yi, et al. Optimization research on forming of fine alumina ceramic by hydrous gel-casting[J]. Electronic Components & Materials, 2005(4): 44-47(in Chinese).
    [36] MO S, HE H, REN Q M, et al. Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation[J]. Journal of Environmental Sciences,2018,75:136-144.
    [37] 卢晗锋, 黄金星, 周瑛, 等. 沉淀剂对Cu-Mn-Ce复合氧化物催化剂结构和性能的影响[J]. 化工学报, 2015, 66(6):2105-2111. doi: 10.11949/j.issn.0438-1157.20141930

    LU Hanfeng, HUANG Jinxing, ZHOU Ying, et al. Effect of precipitants on structure and performance of Cu-Mn-Ce mixed oxide catalysts[J]. CIESC Journal,2015,66(6):2105-2111(in Chinese). doi: 10.11949/j.issn.0438-1157.20141930
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  813
  • HTML全文浏览量:  280
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-10-22
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回