Investigating the mechanical properties and deformation behavior of Ni/SiC nanocomposites using molecular dynamics simulations
-
摘要: Ni/SiC陶瓷金属基纳米复合材料具有出色的力学性能和抗辐照性能,使其成为熔盐反应堆结构材料的优选之一。本研究采用分子动力学模拟方法,研究了单轴拉伸速率和SiC体积分数对Ni/SiC纳米复合材料的拉伸力学性能的影响,并通过观察Ni/SiC纳米复合材料在单轴拉伸过程中的结构演变,揭示了该复合材料的变形机理。研究结果显示,Ni/SiC复合材料的杨氏模量与拉伸速率之间呈现半对数关系,该材料的屈服强度与拉伸速率相关,当拉伸速率小于1×109/s时,屈服强度基本保持不变,当拉伸速率超过此阈值时,屈服强度随拉伸速率增加而增大。此外,SiC体积分数对Ni/SiC复合纳米材料的拉伸力学性能也有重要影响,SiC体积分数的临界值(临界体积分数)计算结果为0.299±0.04。当SiC体积分数低于临界值时,Ni/SiC纳米复合材料的单轴拉伸性能主要由基体Ni的性质决定,且不存在应变硬化现象,其拉伸性能机理归因于Ni-Ni界面大量位错的释放而表现出优异的塑性性能。相反,当SiC体积分数超过临界值时,Ni/SiC纳米复合材料的力学行为主要受SiC影响。随着SiC体积分数的增加,应变硬化和脆性变得更加显著。最初的裂纹形成于Ni-Ni界面,并随着应变增加而扩展。Ni-Ni界面的滑移和SiC晶粒的旋转被确定为体系塑性变形的主要原因。这些发现有助于更好地理解Ni/SiC复合材料的力学性能及其潜在应用,对于熔盐反应堆结构材料的选用具有指导意义。
-
关键词:
- Ni/SiC纳米复合材料 /
- 变形行为 /
- 分子动力学 /
- 变形机理
Abstract: Ni/SiC ceramic metal-based nanocomposites exhibits outstanding mechanical properties and radiation resistance, making it a promising candidate for essential structural materials in molten salt reactors. This study utilized molecular dynamics simulation to investigate the influence of uniaxial tensile rate and volume fraction (VF) of SiC on the tensile mechanical properties of Ni/SiC nanocomposites, as well as to reveal the deformation mechanism during uniaxial tensile. The results demonstrate a semi-logarithmic relationship between the Young’s modulus and strain rate of Ni/SiC composites, with the yield strength being correlated to the tensile rate. When the tensile rate was less than 1×109/s, the yield strength remained essentially unchanged. However, when the tensile rate exceeded this threshold, the yield strength increased with the increase in tensile rate. Additionally, the VF of SiC significantly influenced the tensile mechanical properties of Ni/SiC nanocomposites, with critical volume fraction (CVF) of SiC calculated to be 0.299±0.04. When VF of SiC was below the CVF, the uniaxial tensile properties of Ni/SiC nanocomposites were mainly determined by the properties of the Ni matrix, and strain hardening was not observed. The deformation mechanism was attributed to the release a large number of dislocations at the Ni-Ni interface, demonstrating excellent plasticity. Conversely, when the VF of SiC exceeds the critical value, the mechanical behavior of Ni/SiC nanocomposites was primarily affected by SiC, leading to increased strain hardening and brittleness. The initial cracks formed at the Ni-Ni interface and propagated with increasing strain, with the slip of the Ni-Ni interface and the rotation of SiC grains are identified as the main reasons for the plastic deformation of Ni/SiC. These findings contribute to a better understanding of the mechanical properties of Ni/SiC composites and their potential applications, offering valuable guidance for the selection of structural materials for molten salt reactors.-
Key words:
- Ni/SiC composites /
- deformation behaviors /
- molecular dynamics /
- deformation mechanism
-
图 5 拉伸速率为1×108/s(a)、1×109/s(b)、1×1010/s(c)、应变为ε=0.06时Ni/SiC纳米复合材料的原子构形图 (绿色小球表示FCC结构原子,蓝色球表示立方金刚石结构原子,红色球表示堆垛层错的HCP结构原子,灰色小球原子表示其他状态的原子)
Figure 5. Atomic configuration of Ni/SiC nanocomposites at strain ε=0.06: (a) 1×108/s; (b) 1×109/s; (c) 1×1010/s (Atoms were colored according to the PTM method: green balls for the FCC atoms, blue balls for the cubic diamod atoms, red balls for the HCP atoms which indicate stacking fault, and gray atoms represent atoms in other states)
图 15 应变为ε=0.04(a)、ε=0.05(b)、ε=0.06(c)、ε=0.07(d)、ε=0.080(e)、ε=0.12(f)时Ni/SiC纳米复合材料微观结构变化 (原子根据计算的CNA值着色:PD为白色、ISF红色,为了更清楚地显示缺陷结构,删除了FCC结构的 Ni原子)
Figure 15. Snapshots shown for the microstructure evolution of Ni/SiC nanocomposites: (a) ε=0.04; (b) ε=0.05; (c) ε=0.06; (d) ε=0.07; (e) ε=0.080; (f) ε=0.12 (Atoms are colored according to the calculated CNA values (PD (white), ISF (red). FCC Ni atoms and SiC were excluded for a clearer visualization of the defect structures)
图 16 应变分别为ε=0.072(a)、ε=0.074(b)、ε=0.076(c)、ε=0.078(d)、ε=0.080(e)、ε=0.090(f)时Ni/SiC纳米复合材料位错发射和位错与界面相互作用过程
Figure 16. Main plastic deformation mechanisms for Ni/SiC nanocomposites: Dislocation emission and dislocation interacting with GB accommodated by GB slip in different strain: (a) ε=0.072; (b) ε=0.074; (c) ε=0.076; (d) ε=0.078; (e) ε=0.080; (f) ε=0.090
图 17 应变为ε=0.03(a)、ε=0.04(b)、ε=0.05(c)、ε=0.06(d)、ε=0.08(e)、ε=0.090(f)、ε=0.10(g)、ε=0.12(h)的Ni/SiC纳米复合材料原子快照 (用PTM方法对不同结构的原子着色,其中金刚石结构(蓝色), FCC结构(绿色), HCP结构(红色)以及其他结构(灰色),(f)-(h)显示了从裂纹萌发到断裂形成的过程,插图是红色区域裂纹发展的局部放大图)
Figure 17. Cross-sectional view of Ni/SiC nanocomposites under tensile loading: (a) ε=0.03; (b) ε=0.04; (c) ε=0.05; (d) ε=0.06; (e) ε=0.08; (f) ε=0.090; (g) ε=0.10; (h) ε=0.12 ((a)-(h) were colored with PTM method. cubic diamond was blue, FCC was green, HCP was red, and white indicated other types. (f)-(h) shown the process from crack formation to fracture, the illustrations were local magnification of the development of cracks in the red region)
图 18 应变为ε=0.058(a)、ε=0.062(b)、ε=0.066(c)、ε=0.070(d)、ε=0.074(e)、ε=0.078(f)、ε=0.082(g)、ε=0.086(h) 时Ni/SiC纳米复合材料的原子快照,原子着色同图17((a)~(e)显示了从Ni-Ni界面处位错发射和滑移过程;(f)~(h)为SiC-SiC界面裂纹形成过程)
Figure 18. Cross-sectional view of Ni/SiC nanocomposites under tensile loading with different trains: (a) ε=0.058; (b) ε=0.062; (c) ε=0.066; (d) ε=0.070; (e) ε=0.074; (f) ε=0.078; (g) ε=0.082; (h) ε=0.086 ((a)-(h) were colored same as Fig.17, The emission and slip of dislocations from Ni-Ni interface was showed in (a) - (e). (f)-(h) shows crack formed at SiC-SiC
图 19 晶粒界面滑移(a)~(a2)和晶粒旋转机制(b)~(b2)。(a)和(b)为ε=0.066的时原子快照,其中(b)为y=5.0 nm 和y=5.3 nm之间的切片,着色同图17,(a1)和(b1)是分别表示Ni晶粒滑移和SiC晶粒的旋转的原子的位移矢量,(a2)和(b2)分别为(a1)和(b1)的局部放大图
Figure 19. Snapshots of grains interface slip (a)-(a2) and grains rotation (b)-(b2). (a) and (b) were snapshots at ε=0.066, where (b) was obtained between planes y=5.0 nm and y=5.3 nm. They were colored as similar Fig.17. (a1) and (b1) were shown by atom displacement vectors which can demonstrate grains interface sliding and grains rotation, respectively. (a1) zoomed-in (a2) which represented Ni grains interface sliding. (b1) zoomed-in (b2) that represented the rotation of SiC grain
表 1 模型中的的原子数和SiC体积分数
Table 1. Summary of initial Ni/SiC nanocomposites with SiC grains and Ni grains
Case SiC grains Ni grains SiC volume fraction Atoms 1 0 30 0 1187026 2 3 27 0.1125 1191915 3 6 24 0.2583 1198346 4 9 21 0.3422 1202236 5 12 18 0.4122 1205302 6 15 15 0.5433 1211249 7 18 12 0.5962 1213686 -
[1] USDOE. A Technology Roadmap for Generation IV Nuclear Energy Systems[C]. 2002. [2] Waldrop M M. Nuclear energy: Radical reactors[J]. Nature, 2012, 492(7427): 26-29. doi: 10.1038/492026a [3] Yang C, Huang H, Thorogood G J, et al. The Effect of Grain Size and Dislocation Density on the Tensile Properties of Ni-SiCNP Composites During Annealing[J]. Journal of Materials Engineering and Performance, 2016, 25(3): 726-733. doi: 10.1007/s11665-016-1938-2 [4] Singh L, Singh B, Saxena K K. Manufacturing techniques for metal matrix composites (MMC): an overview[J]. Advances in Materials and Processing Technologies, 2020, 6(2): 441-457. doi: 10.1080/2374068X.2020.1729603 [5] Akhil M G, Manu K M N S, Rajan T P D, et al. Liquid Phase Processing of Metal Matrix Composites[M]. Encyclopedia of Materials: Composites, Brabazon D, Oxford: Elsevier, 2021, 160-172. [6] Mavhungu S T, Akinlabi E T, Onitiri M A, et al. Aluminum Matrix Composites for Industrial Use: Advances and Trends[J]. Procedia Manufacturing, 2017, 7: 178-182. doi: 10.1016/j.promfg.2016.12.045 [7] Miracle D B. Metal matrix composites – From science to technological significance[J]. Composites Science and Technology, 2005, 65(15): 2526-2540. [8] Ramanathan A, Krishnan P K, Muraliraja R. A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities[J]. Journal of Manufacturing Processes, 2019, 42: 213-245. doi: 10.1016/j.jmapro.2019.04.017 [9] Xia J, Hu W, Yang J, et al. A study of the behavior of helium atoms at Ni grain boundaries[J]. physica status solidi (b), 2006, 243(12): 2702-2710. doi: 10.1002/pssb.200642023 [10] Saberi Y, Zebarjad S M, Akbari G H. On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite[J]. Journal of Alloys and Compounds, 2009, 484(1): 637-640. [11] Xie R, Ilavsky J, Huang H F, et al. Dispersed SiC nanoparticles in Ni observed by ultra-small-angle X-ray scattering[J]. Journal of Applied Crystallography, 2016, 49(6): 2155-2160. doi: 10.1107/S1600576716015090 [12] Yang C, Huang H, de Los Reyes M, et al. Microstructures and Tensile Properties of Ultrafine-Grained Ni–(1–3.5) wt% SiCNP Composites Prepared by a Powder Metallurgy Route[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7): 809-816. doi: 10.1007/s40195-015-0261-5 [13] Zhang X F, Harley G, De Jonghe L C. Co-continuous Metal−Ceramic Nanocomposites[J]. Nano Letters, 2005, 5(6): 1035-1037. doi: 10.1021/nl050379t [14] Leblanc D. Molten salt reactors: A new beginning for an old idea[J]. Nuclear Engineering and Design, 2010, 240(6): 1644-1656. doi: 10.1016/j.nucengdes.2009.12.033 [15] Shen Y L, Chawla N. On the correlation between hardness and tensile strength in particle reinforced metal matrix composites[J]. Materials Science and Engineering: A, 2001, 297(1): 44-47. [16] Baskes M I, Hoagland R G, Needleman A. Summary report: computational issues in the mechanical behavior of metals and intermetallics[J]. Materials Science and Engineering: A, 1992, 159(1): 1-34. doi: 10.1016/0921-5093(92)90395-H [17] Brockenbrough J R, Suresh S. Constitutive behavior of a microcracking brittle solid in cyclic compression[J]. Journal of the Mechanics and Physics of Solids, 1987, 35(6): 721-742. doi: 10.1016/0022-5096(87)90052-4 [18] Llorca J, Needleman A, Suresh S. An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites[J]. Acta Metallurgica et Materialia, 1991, 39(10): 2317-2335. doi: 10.1016/0956-7151(91)90014-R [19] Llorca J, Suresh S, Needleman A. An experimental and numerical study of cyclic deformation in metal-matrix composites[J]. Metallurgical Transactions A, 1992, 23(3): 919-934. doi: 10.1007/BF02675568 [20] Dongare A M, Lamattina B, Rajendran A M. Strengthening Behavior and Tension–Compression Strength–Asymmetry in Nanocrystalline Metal–Ceramic Composites[J]. Journal of Engineering Materials and Technology, 2012, 134(4): 41003. doi: 10.1115/1.4006678 [21] Zhou Y, Yang Z, Lu Z. Dynamic crack propagation in copper bicrystals grain boundary by atomistic simulation[J]. Materials Science and Engineering: A, 2014, 599: 116-124. doi: 10.1016/j.msea.2014.01.070 [22] Zhou Y, Yang W, Hu M, et al. The typical manners of dynamic crack propagation along the metal/ceramics interfaces: A molecular dynamics study[J]. Computational Materials Science, 2016, 112: 27-33. doi: 10.1016/j.commatsci.2015.10.012 [23] Yang Z, Zhou Y, Wang T, et al. Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation[J]. Computational Materials Science, 2014, 82: 17-25. doi: 10.1016/j.commatsci.2013.09.029 [24] Ward D K, Curtin W A, Qi Y. Aluminum–silicon interfaces and nanocomposites: A molecular dynamics study[J]. Composites Science and Technology, 2006, 66(9): 1151-1161. doi: 10.1016/j.compscitech.2005.10.024 [25] Ward D K, Curtin W A, Qi Y. Mechanical behavior of aluminum–silicon nanocomposites: A molecular dynamics study[J]. Acta Materialia, 2006, 54(17): 4441-4451. doi: 10.1016/j.actamat.2006.05.022 [26] Feng X, Mai Y, Qin Q. A micromechanical model for interpenetrating multiphase composites[J]. Computational Materials Science, 2003, 28(3): 486-493. [27] Feng X, Tian Z, Liu Y, et al. Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites[J]. Applied Composite Materials, 2004, 11(1): 33-55. doi: 10.1023/B:ACMA.0000003972.32599.0c [28] Sun X, Li Q, Gu Y, et al. Mechanical properties of bioinspired bicontinuous nanocomposites[J]. Computational Materials Science, 2013, 80: 71-78. doi: 10.1016/j.commatsci.2013.04.012 [29] Yamakov V, Saether E, Phillips D R, et al. Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation[J]. Journal of Materials Science, 2007, 42(5): 1466-1476. doi: 10.1007/s10853-006-1176-3 [30] Ajayan P M, Suhr J, Koratkar N. Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping[J]. Journal of Materials Science, 2006, 41(23): 7824-7829. doi: 10.1007/s10853-006-0693-4 [31] Zhang R, Gao L, Guo J. Preparation and characterization of coated nanoscale Cu/SiCp composite particles[J]. Ceramics International, 2004, 30(3): 401-404. doi: 10.1016/S0272-8842(03)00123-8 [32] Brostow W, Dussault J, Fox B L. Construction of Voronoi polyhedra[J]. Journal of Computational Physics, 1978, 29(1): 81-92. doi: 10.1016/0021-9991(78)90110-9 [33] Hirel P. Atomsk: A tool for manipulating and converting atomic data files[J]. Computer Physics Communications, 2015, 197: 212-219. doi: 10.1016/j.cpc.2015.07.012 [34] Becker C A, Tavazza F, Trautt Z T, et al. Considerations for choosing and using force fields and interatomic potentials in materials science and engineering[J]. Current Opinion in Solid State and Materials Science, 2013, 17(6): 277-283. doi: 10.1016/j.cossms.2013.10.001 [35] 马小强, 徐喻琼, 苏华山, 等. 含有缺陷3C-SiC陶瓷拉伸性能的分子动力学模拟[J]. 原子与分子物理学报, 2019, 36(4): 688-695.M Xiao-qiang, X Yu-qiong, S Hua-shan , et al, Study of tensile properties on containing defects 3C-SiCceramics by molecular dynamics simulation[J]. Journal of Atomic and Molecular Physics, 2019, 36(4): 688-695 (in Chinese) [36] Yang Z, Lu Z. Atomistic simulation of the mechanical behaviors of co-continuous Cu/SiC nanocomposites[J]. Composites Part B: Engineering, 2013, 44(1): 453-457. doi: 10.1016/j.compositesb.2012.04.010 [37] Zhu Z, Gong Y, Zhou Y, et al. Molecular dynamics simulation of single crystal Nickel nanometric machining[J]. Science China Technological Sciences, 2016, 59(6): 867-875. doi: 10.1007/s11431-016-6061-y [38] Katin K P, Prudkovskiy V S, Maslov M M. Molecular dynamics simulation of nickel-coated graphene bending[J]. Micro & Nano Letters, 2018, 13(2): 160-164. [39] Qiu C, Su Y, Yang J, et al. Microstructural characteristics and mechanical behavior of SiC(CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations[J]. Composites Part B: Engineering, 2021, 220: 108996. doi: 10.1016/j.compositesb.2021.108996 [40] Tersoff J. Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Physical Review B, 1990, 41(5): 3248. [41] 马小强, 袁大庆, 夏海鸿, 等. 3C-SiC辐照诱发缺陷演化及温度效应分子动力学模拟[J]. 原子能科学技术, 2016, 50(2): 219-226.M Xiao-Qiang, Y Da-Qing, X Hai-Hong, et al. Molecular Dynamics Simulation of Evolution of Defect and Temperature Effect in Irradiated 3C-SiC[J]. Atomic Energy Science and Technology, 2016, 50(2): 219-226(in Chinese). [42] Stukowski A. Structure identification methods for atomistic simulations of crystalline materials[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 45021. doi: 10.1088/0965-0393/20/4/045021 [43] Larsen P M, Schmidt S, Schiøtz J. Robust structural identification via polyhedral template matching[J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24(5): 55007. doi: 10.1088/0965-0393/24/5/055007 [44] Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modelling and simulation in materials science and engineering, 2010, 18(8): 85001. doi: 10.1088/0965-0393/18/8/085001 [45] Yamakov V, Wolf D, Phillpot S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation[J]. Acta Materialia, 2002, 50(20): 5005-5020. doi: 10.1016/S1359-6454(02)00318-X [46] Zhang J, Sun T, Yan Y, et al. Atomistic investigation of scratching-induced deformation twinning in nanocrystalline Cu[J]. Journal of Applied Physics, 2012, 112(7): 73526. doi: 10.1063/1.4757937 [47] Thompson A P, Aktulga H M, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171 [48] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 15012. doi: 10.1088/0965-0393/18/1/015012 [49] Deng C, Sansoz F. Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures[J]. Physical review. B, Condensed matter and materials physics, 2010, 81(15): 155430. doi: 10.1103/PhysRevB.81.155430 [50] Zhou Y, Hu M. Mechanical behaviors of nanocrystalline Cu/SiC composites: An atomistic investigation[J]. Computational Materials Science, 2017, 129: 129-136. doi: 10.1016/j.commatsci.2016.12.014 [51] Lu L, Schwaiger R, Shan Z W, et al. Nano-sized twins induce high rate sensitivity of flow stress in pure copper[J]. Acta Materialia, 2005, 53(7): 2169-2179. doi: 10.1016/j.actamat.2005.01.031 [52] Schwaiger R, Moser B, Dao M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J]. Acta Materialia, 2003, 51(17): 5159-5172. doi: 10.1016/S1359-6454(03)00365-3 [53] Warner D H, Curtin W A, Qu S. Rate dependence of crack-tip processes predicts twinning trends in f. c. c. metals[J]. Nature Materials, 2007, 6(11): 876-881. doi: 10.1038/nmat2030 [54] Schiøtz J, Jacobsen K W. A maximum in the strength of nanocrystalline copper.[J]. Science (New York, N. Y. ), 2003, 301(5638): 1357-1359. doi: 10.1126/science.1086636 [55] Yamakov, Wolf, R S, et al. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation[J]. Nature Materials, 2004, 3(1): 43-47. doi: 10.1038/nmat1035 [56] Yamakov V, Wolf D, Phillpot S R, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation[J]. Nature Materials, 2002, 1(1): 45-49. doi: 10.1038/nmat700 [57] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127-140. doi: 10.1016/0022-5096(63)90060-7 [58] Zhan J M, Jian W R, Tang X C, et al. Tensile deformation of nanocrystalline Al-matrix composites: Effects of the SiC particle and graphene[J]. Computational Materials Science, 2019, 156: 187-194. doi: 10.1016/j.commatsci.2018.09.050 [59] Liang H, Upmanyu M, Huang H. Size-dependent elasticity of nanowires: Nonlinear effects[J]. Physical Review B, 2005, 71(24): 241401-241403. doi: 10.1103/PhysRevB.71.241401
计量
- 文章访问数: 103
- HTML全文浏览量: 93
- 被引次数: 0