留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢板屈服对CFRP-钢界面粘接性能影响的试验研究

吴超 余洋喆 雷昕弋 谭力豪

吴超, 余洋喆, 雷昕弋, 等. 钢板屈服对CFRP-钢界面粘接性能影响的试验研究[J]. 复合材料学报, 2021, 39(0): 1-12
引用本文: 吴超, 余洋喆, 雷昕弋, 等. 钢板屈服对CFRP-钢界面粘接性能影响的试验研究[J]. 复合材料学报, 2021, 39(0): 1-12
Chao WU, Yangzhe YU, Xinyi LEI, Lik-ho TAM. Experimental study on the effect of steel yielding on the bond behavior between CFRP and steel plate[J]. Acta Materiae Compositae Sinica.
Citation: Chao WU, Yangzhe YU, Xinyi LEI, Lik-ho TAM. Experimental study on the effect of steel yielding on the bond behavior between CFRP and steel plate[J]. Acta Materiae Compositae Sinica.

钢板屈服对CFRP-钢界面粘接性能影响的试验研究

基金项目: 国家自然科学基金 (51911530208;51978025)
详细信息
    通讯作者:

    谭力豪,博士,助理教授,研究方向为土木工程复合材料多尺度模拟 E-mail:leo_tam@buaa.edu.cn

  • 中图分类号: TU398.9

Experimental study on the effect of steel yielding on the bond behavior between CFRP and steel plate

  • 摘要: 为研究钢板屈服对碳纤维增强树脂基复合材料(CFRP)-钢粘接界面的性能影响,开展了一系列CFRP-钢双搭接粘接节点拉伸试验和有限元模拟。以钢板厚度和CFRP粘接长度为变量,通过拉伸试验,得到了钢板屈服条件下的节点拉伸荷载-位移曲线、有效粘接长度和失效模式。试验结果表明,15 mm厚钢板的粘接节点在破坏之前表现为弹性状态,而8 mm厚钢板的粘接节点破坏前已经屈服并进入塑性状态。钢板屈服使得节点的荷载-位移曲线由线性变为非线性,且钢板屈服时节点的失效位移增加;随着钢板屈服,节点的失效模式由CFRP层离破坏变为CFRP层离和钢板-胶层界面脱粘混合模式,且随着钢板屈服程度的增大,钢板-胶层脱粘面积也在增大。根据本文所采用的节点试件及所选取的材料属性,当8 mm厚钢板节点在出现钢板屈服后,其失效位移约为15 mm厚钢板节点的4倍,但其承载力仅为15 mm厚钢板节点的69%。即节点由于钢板屈服所获得的延性是以节点承载力降低为代价的。从有限元结果可以发现,当钢板屈服程度增加,节点失效位置将会从接头处转移至粘接接头远端,有效粘接长度也随之减小。

     

  • 图  1  碳纤维增强树脂基复合材料(CFRP)板-钢双搭接粘接节点示意图

    Figure  1.  Schematic view of the CFRP-steel double strap joint

    图  2  CFRP板-钢双搭接粘接节点制作及胶层厚度控制示意图

    Figure  2.  Schematic diagram of a mould preparing the CFRP-steel double strap joints

    图  3  试验加载装置

    Figure  3.  Test Setup

    图  4  钢板名义应力与屈服应力的比值与CFRP板粘接长度的关系

    Figure  4.  Variation of nominal stress of steel and yield stress with CFRP bond length

    图  5  CFRP板-钢双搭接粘接节点荷载-位移曲线

    Figure  5.  Load-displacement curves of CFRP-steel double strap joints

    图  6  CFRP板-钢双搭接粘接节点典型的失效模式

    Figure  6.  Typical failure modes of CFRP-steel double strap joints

    图  7  CFRP板-钢双搭接粘接节点承载力随CFRP粘接长度变化规律

    Figure  7.  Variation of ultimate load of CFRP- steel double strap bonded joints with CFRP bond length

    图  8  CFRP板-钢双搭接粘接节点有限元模型示意图

    Figure  8.  Finite element model of CFRP–steel double strap joints

    图  9  CFRP板-钢双搭接粘接节点有限元计算中采用的损伤模型

    Figure  9.  Damage model for finite element analysis of CFRP-steel double strap joints

    $\tau _{\text{a}}$-Maximum shear stress of adhesive; $\sigma_ {\text{a}}$-Maximum tension stress of adhesive; $\delta_ {\text{f}}$-Limit slip of failure; K-Interfacial stiffness; bcf-Thickness of CFRP plate; Ecf-Young’s modulus of CFRP plate; Gf -Interfacial fracture energy

    图  10  钢板上的应力云图

    Figure  10.  Stress distribution of steel of the specimen with yield steel plate

    图  11  不同钢板厚度CFRP板-钢双搭接粘接试件破坏起始位置示意图

    Figure  11.  Failure location of CFRP-steel double strap joint specimens with different thickness of steel

    表  1  碳纤维增强树脂基复合材料(CFRP)板、钢板和胶粘剂Araldite 420材料属性

    Table  1.   Mechanical properties of CFRP plate, steel, and Araldite 420

    Tensile strength/MPaYield stress/MPaYoung’s modulus/GPa
    CFRP plate2659N/A155.9
    Steel-8 mm548349203.3
    Steel-15 mm539381219.6
    Araldite 42030N/A1.744
    下载: 导出CSV

    表  2  CFRP板-钢双搭接粘接试件参数

    Table  2.   Parameters of CFRP-steel double strap joints

    Specimenta /mmL1/mm
    CFRP30-Steel80.4130
    CFRP50-Steel80.4250
    CFRP70-Steel80.3670
    CFRP90-Steel80.3890
    CFRP110-Steel80.36110
    CFRP130-Steel80.39130
    CFRP30-Steel150.3930
    CFRP50-Steel150.4150
    CFRP70-Steel150.4470
    CFRP90-Steel150.4290
    CFRP110-Steel150.42110
    CFRP130-Steel150.42130
    Notes:Rules of specimen label “**-**”: Characters before the “-” indicate the bond length of specimen; Characters after the “-” indicate the thickness of steel. ta is the calculated thickness of one-side adhesive of specimens; L1 is the length of specimens.
    下载: 导出CSV

    表  3  CFRP板-钢双搭接粘接试件拉伸试验结果

    Table  3.   Results of tension tests of CFRP-steel double strap joints

    SpecimenFult/kN$ \eta $Failure mode
    CFRP30-Steel846.710.558Steel and adhesive interface debonding & CFRP delamination
    CFRP50-Steel871.230.850Steel and adhesive interface debonding & CFRP delamination
    CFRP70-Steel879.140.945Steel and adhesive interface debonding & CFRP delamination & steel yielding
    CFRP90-Steel889.571.069Steel and adhesive interface debonding & CFRP delamination & steel yielding
    CFRP110-Steel888.701.059Steel and adhesive interface debonding & CFRP delamination & steel yielding
    CFRP130-Steel891.321.090Steel and adhesive interface debonding & CFRP delamination & steel yielding
    CFRP30-Steel1550.870.297CFRP delamination
    CFRP50-Steel1578.670.459CFRP delamination
    CFRP70-Steel15113.190.660CFRP delamination
    CFRP90-Steel15123.320.719CFRP delamination
    CFRP110-Steel15122.610.715CFRP delamination
    CFRP130-Steel15131.520.767CFRP delamination
    Notes:Fult is the ultimate load of each specimen; $ \eta $is the ratio between nominal stress of steel and yield stress of steel.
    下载: 导出CSV

    表  4  CFRP板-钢双搭接粘接节点有限元结果

    Table  4.   Results of finite element results of CFRP-steel double strap joints

    SpecimenFult-FEM/kNFailure Position$ \eta $Error/%
    CFRP30-Steel642.78Joint0.681
    CFRP50-Steel666.16Joint1.053
    CFRP70-Steel672.88End1.160
    CFRP90-Steel673.20End1.165
    CFRP110-Steel673.70End1.173
    CFRP130-Steel673.98End1.177
    CFRP30-Steel844.58Joint0.532−4.56
    CFRP50-Steel866.28Joint0.791−6.94
    CFRP70-Steel880.38Joint0.9591.57
    CFRP90-Steel888.96Joint1.062−0.68
    CFRP110-Steel894.57Joint1.1296.61
    CFRP130-Steel896.86Joint1.1566.07
    CFRP30-Steel1548.31Joint0.282−5.03
    CFRP50-Steel1580.58Joint0.4702.43
    CFRP70-Steel15104.98Joint0.612−7.25
    CFRP90-Steel15118.82Joint0.693−3.65
    CFRP110-Steel15119.72Joint0.698−2.35
    CFRP130-Steel15125.30Joint0.731−4.73
    Notes:Fult-FEM is the ultimate load of each specimen in the finite element analysis; $ \eta $is the ratio between nominal stress of steel and yield stress of steel.
    下载: 导出CSV
  • [1] HOLLAWAY L, CADEI J. Progress in the technique of upgrading metallic structures with advanced polymer composites[J]. Progress in Structural Engineering and Materials,2002,4(2):131-48. doi: 10.1002/pse.112
    [2] ZHAO X L, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Engineering Structures,2007,29(8):1808-23. doi: 10.1016/j.engstruct.2006.10.006
    [3] 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响 [J/OL]. 复合材料学报: 1-11.

    LI A B, XU S H. Effect of corrosion on the surface properties of the l plate and interfacial bonding properties between CFRP plate and corroded steel plate [J/OL]. Acta Materiae Compositae Sinica, 1-11. (In Chinese).
    [4] 李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J/OL]. 复合材料学报: 1-18.

    LI T, NING Z H, WU J Y. Interfacial debonding failure of CFRP-strengthened steel structures [J/OL]. Acta Materiae Compositae Sinica, 1-18. (In Chinese).
    [5] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响 [J/OL]. 复合材料学报: 1-19.

    LI Y, LI C X, ZHENG H, et al. Effect of curing agent mixing on interfacial bond behaviour CFRP plate-steel plate at elevated temperature [J/OL]. Acta Materiae Compositae Sinica, 1-19. (In Chinese).
    [6] FERNANDO D, TENG J G, YU T, et al. Preparation and characterization of steel surfaces for adhesive bonding[J]. Journal of Composites for Construction,2013,17(6):04013012. doi: 10.1061/(ASCE)CC.1943-5614.0000387
    [7] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12):3534-3546.

    LI C X, KE L, CHEN Z Y, et al. Experimental study and numerical simulation for bond behavior of interface between CFRP and steel[J]. Acta Materiae Compositae Sinica,2018,35(12):3534-3546(in Chinese).
    [8] FAWZIA S, ZHAO X L, AL-MAHAIDI R. Bond–slip models for double strap joints strengthened by CFRP[J]. Composite Structures,2010,92(9):2137-45. doi: 10.1016/j.compstruct.2009.09.042
    [9] AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials,2015,98:489-501. doi: 10.1016/j.conbuildmat.2015.08.130
    [10] WU C, ZHAO X L, DUAN W H, et al. Bond characteristics between ultra high modulus CFRP laminates and steel[J]. Thin-Walled Structures,2012,51:147-57. doi: 10.1016/j.tws.2011.10.010
    [11] Yang J Q, Smith S T, Feng P. Effect of FRP-to-steel bonded joint configuration on interfacial stresses: Finite element investigation[J]. Thin-Walled Structures,2013,62:215-228. doi: 10.1016/j.tws.2012.07.020
    [12] AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Bond behaviour between CFRP laminates and steel members under different loading rates[J]. Composite Structures,2016,148:236-51. doi: 10.1016/j.compstruct.2016.04.002
    [13] AL-ZUBAIDY H, AL-MAHAIDI R, ZHAO X L. Experimental investigation of bond characteristics between CFRP fabrics and steel plate joints under impact tensile loads[J]. Composite Structures,2012,94(2):510-8. doi: 10.1016/j.compstruct.2011.08.018
    [14] DOROUDI Y, FERNANDO D, ZHOU H, et al. Fatigue behavior of FRP-to-steel bonded interface: An experimental study with a damage plasticity model[J]. International Journal of Fatigue,2020,139:105785. doi: 10.1016/j.ijfatigue.2020.105785
    [15] WU C, ZHAO X L, CHIU W K, et al. Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates[J]. Composites Part B:Engineering,2013,50:344-53. doi: 10.1016/j.compositesb.2013.02.040
    [16] 韦芳芳, 朱德昌, 王海涛, 等. 冻融环境下 CFRP 板-钢界面黏结性能试验研究[J]. 东南大学学报 (自然科学版), 2020, 9(55):803-807.

    WEU F F, ZHU D C, WANG H T, et al. Experimental study on bond behavior of CFRP plate-steel interface in freeze-thaw environment[J]. Journal of Southeast University (Natural Science Edition),2020,9(55):803-807(in Chinese).
    [17] 庞育阳. 极端服役环境下CFRP-钢界面粘结性能研究 [D]. 东南大学, 2019.

    PANG Y Y. Study on the bond behavior of CFRP-steel interfaces under extreme service environment [D]. Southeast University, 2019. (In Chinese).
    [18] BATUWITAGE C, FAWZIA S, THAMBIRATNAM D, et al. Durability of CFRP strengthened steel plate double-strap joints in accelerated corrosion environments[J]. Composite Structures,2017,160:1287-98. doi: 10.1016/j.compstruct.2016.10.101
    [19] XIA S, TENG J. Behaviour of FRP-to-steel bonded joints; proceedings of the Proceedings of the international symposium on bond behaviour of FRP in structures, F, 2005 [C]. International Institute for FRP in Construction.
    [20] PANG Y, WU G, WANG H, et al. Bond-slip model of the CFRP-steel interface with the CFRP delamination failure[J]. Composite Structures,2021,256:113015. doi: 10.1016/j.compstruct.2020.113015
    [21] HART-SMITH L. Adhesive-bonded scarf and stepped-lap joints [J]. Washington: NASA CR-112237, Virginia: Langley Research Center Hampton, Januray. 1973.
    [22] BOCCIARELLI M, COLOMBI P, FAVA G, et al. Prediction of debonding strength of tensile steel/CFRP joints using fracture mechanics and stress based criteria[J]. Engineering Fracture Mechanics,2009,76(2):299-313. doi: 10.1016/j.engfracmech.2008.10.005
    [23] PHAM N V, MIYASHITA T. Nonlinear stress analysis for CFRP-sheet-bonded steel plates under uniaxial tensile loading[J]. Journal of JSCE,2020,8(1):127-43. doi: 10.2208/journalofjsce.8.1_127
    [24] BOCCIARELLI M, COLOMBI P. Elasto-plastic debonding strength of tensile steel/CFRP joints[J]. Engineering Fracture Mechanics,2012,85:59-72. doi: 10.1016/j.engfracmech.2012.02.008
    [25] NOZAKA K, SHIELD C K, HAJJAR J F. Design of a test specimen to assess the effective bond length of carbon fiber-reinforced polymer strips bonded to fatigued steel bridge girders[J]. Journal of Composites for Construction,2005,9(4):304-12. doi: 10.1061/(ASCE)1090-0268(2005)9:4(304)
    [26] NOZAKA K, SHIELD C K, HAJJAR J F. Effective bond length of carbon-fiber-reinforced polymer strips bonded to fatigued steel bridge I-girders[J]. Journal of Bridge Engineering,2005,10(2):195-205. doi: 10.1061/(ASCE)1084-0702(2005)10:2(195)
    [27] COLOMBI P, FAVA G. Fatigue behaviour of tensile steel/CFRP joints[J]. Composite Structures,2012,94(8):2407-17. doi: 10.1016/j.compstruct.2012.03.001
    [28] LIU H, ZHAO X L, AL-MAHAIDI R. Effect of fatigue loading on bond strength between CFRP sheets and steel plates[J]. International Journal of Structural Stability and Dynamics,2010,10(1):1-20. doi: 10.1142/S0219455410003348
    [29] COLOMBI P, POGGI C. Strengthening of tensile steel members and bolted joints using adhesively bonded CFRP plates[J]. Construction and Building Materials,2006,20(1-2):22-33. doi: 10.1016/j.conbuildmat.2005.06.042
    [30] KIM S, SMITH S T, YOUNG B. Effect of surface preparation on the strength of FRP-to-mild steel and FRP-to-stainless steel joints [M]. Advances in FRP Composites in Civil Engineering. Springer. 2011: 869-72.
    [31] YU T, FERNANDO D, TENG J, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B:Engineering,2012,43(5):2279-89. doi: 10.1016/j.compositesb.2012.01.024
    [32] ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039M-17 [S]. Philadelphia: ASTM International, 2017.
    [33] ASTM. Standard test methods for tension testing of metallic materials: ASTM E8M-21[S]. Philadelphia: ASTM International, 2021.
    [34] ASTM. standard test method for tensile properties of plastics: ASTM D638M-14 [S]. Philadelphia: ASTM International, 2017.
    [35] FERNANDO N D. Bond behaviour and debonding failures in CFRP-strengthened steel members[D]. Hong Kong: Hong Kong Polytechnic University, 2010.
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 录用日期:  2021-11-25
  • 修回日期:  2021-11-24
  • 网络出版日期:  2021-12-23

目录

    /

    返回文章
    返回