留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型磁性环氧树脂水泥浆液硬化机理与孔径分析

刘杰 李政 黎照 孙涛 程其芬 秦仕福

刘杰, 李政, 黎照, 等. 新型磁性环氧树脂水泥浆液硬化机理与孔径分析[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 刘杰, 李政, 黎照, 等. 新型磁性环氧树脂水泥浆液硬化机理与孔径分析[J]. 复合材料学报, 2022, 40(0): 1-12
Jie LIU, Zheng LI, Zhao LI, Tao SUN, Qifen CHENG, Shifu QIN. Hardening mechanism and pore size analysis of new magnetic epoxy cement grout[J]. Acta Materiae Compositae Sinica.
Citation: Jie LIU, Zheng LI, Zhao LI, Tao SUN, Qifen CHENG, Shifu QIN. Hardening mechanism and pore size analysis of new magnetic epoxy cement grout[J]. Acta Materiae Compositae Sinica.

新型磁性环氧树脂水泥浆液硬化机理与孔径分析

基金项目: 国家自然科学基金重点项目(U2034203,51439003);国家自然科学基金面上项目(52079071;51979151);三峡库区地质灾害教育部重点实验室开放基金(2020KDZ08);三峡大学博士培优基金(2021BSPY016)
详细信息
    通讯作者:

    李政,博士研究生,研究方向为岩土工程  E-mail:1442486283@qq.com

Hardening mechanism and pore size analysis of new magnetic epoxy cement grout

  • 摘要: 常规砂浆无法满足反倾斜裂隙和缺陷的工程填充要求,在注浆压力驱使下会引入大量气泡,浆液密实度得不到保障。针对此,研发了一种新型磁性环氧树脂水泥浆液(MEC),可实现反重力式注浆锚固、导向式流动、增大浆体密实度、浆液粘度实时调控。采用XRD、SEM、N2吸附测试方法,对MEC浆液在不同磁场作用下的微观形貌、水化产物和孔径进行了分析。结果表明:MEC浆液主要分为环氧树脂固化、水泥水化2个硬化过程。固化产物对水化产物进行包裹,与AFt和Ca(OH)2中的Ca2+发生离子作用,形成络合物包裹磁粉,对浆液中存在的微小孔隙进行填充;磁场强度由400GS增大到6000GS时,孔隙面积减小率达77.6%,孔隙数量减小率达76.8%。N2吸附试验表明,附加磁场会降低介孔和大孔的数量,显著减小比表面积,磁性浆液符合H4型滞回线,主要表现为墨水瓶孔;基于磁偶极子理论,数值模拟了磁颗粒受力,分析结果表明在磁场强度为2000~6000GS可高效减小孔隙面积。

     

  • 图  1  微米级磁粉SEM图像

    Figure  1.  Micrometer-grade magnetic powder SEM images

    图  2  MEC样品微观形貌

    Figure  2.  Microscopic morphologies of MEC samples

    图  3  水泥砂浆与MEC水化产物对比

    Figure  3.  Hydration products comparison between cement mortar and MEC

    图  4  不同环氧掺量的MEC浆液7d XRD图谱

    Figure  4.  7d XRD spectra of MEC slurry with different epoxy contents

    图  5  磁场作用下水泥浆液和MEC内外圈层XRD图谱

    Figure  5.  XRD patterns of cement grout and magnetic epoxy grout (MEC) under magnetic field

    图  6  MEC锚固体

    Figure  6.  MEC anchor solid

    图  7  不同磁力下MEC锚固段孔径分析

    Figure  7.  Analysis of aperture of anchor section of MEC under different magnetic forces

    图  8  MEC锚固体内外圈层截面分区示意图

    Figure  8.  Schematic diagram of section partition of inner and outer layers of MEC anchorage

    图  9  MEC锚固体孔隙分布与孔隙数量分布直方图

    Figure  9.  Histogram of pore distribution and pore number distribution of MEC anchorage

    图  10  MEC锚固体图像分区与孔径统计

    Figure  10.  Image partition and aperture statistics of MEC anchorage

    图  11  MEC锚固体孔径分区统计

    Figure  11.  Stats of aperture partition of MEC anchorage

    图  12  MEC锚固体SEM图像二值化处理

    Figure  12.  SEM image binarization processing of MEC anchorage

    图  13  水泥浆液和MEC的N2吸附-脱附等温线

    Figure  13.  N2 adsorption-desorption isotherms of cement grout and MEC

    图  14  水泥浆液和MEC多点BET图

    Figure  14.  Plasma multipoint BET plot of cement grout and MEC

    图  15  水泥浆液和MEC累积孔容曲线

    Figure  15.  Cumulative pore curves of cement grout and MEC

    图  16  水泥浆液和MEC微分孔径分布曲线

    Figure  16.  Differential aperture distribution curves of cement grout and MEC

    图  17  MEC中磁颗粒的磁偶极子磁矩分布图

    Figure  17.  Distribution diagram of magnetic dipoles of magnetic particles in MEC

    图  18  MEC中磁颗粒受力及孔隙率与磁场强度关系

    Figure  18.  Relationship between magnetic particle force and porosity and magnetic field strength in MEC

    表  1  磁性环氧树脂水泥浆液(MEC)配合比

    Table  1.   Design of magnetic epoxy cement slurry (MEC) g

    MaterialsCementAbsolute water consumptionWater-borne epoxy resinCuring agentMagnetic powder contentDisperser
    Cement grout4001600000
    MEC400110100851001.5
    下载: 导出CSV

    表  2  MEC锚固体内外圈层孔隙统计

    Table  2.   Porosity statistics in the inner and outer circles of MEC anchorage


    Layered
    Category
    Category
    Total pore numberMacrovoid(0.18-0.4 mm)Fine pore(d<0.1 mm)
    Area/mm2NumberArea/mm2Number
    External circle2180.32660.418165
    Internal circle920.06120.191865
    下载: 导出CSV

    表  3  水泥浆液和MEC的孔结构参数

    Table  3.   Hole structure parameters of cement grout and MEC

    SampleSpecific surface area(m2.g-1)Adsorption constant cBETTotal volume(m3(STP).g-1)
    Cement grout25.73447.0215.9124
    MEC(H=0GS)8.20595.0221.8853
    MEC(H=6000GS)6.36834.6451.4632
    下载: 导出CSV
  • [1] 陈文, 刘永球, 仇学明. 锦屏水电站左岸帷幕灌浆试验与分析[J]. 水利水电技术, 2008, 39(9):22-25. doi: 10.3969/j.issn.1000-0860.2008.09.007

    CHEN Wen, Liu Yongqiu, QIU Xueming. Expe riment and analysis of curtain grouting on left bank of Jinping Hydropower Station[J]. Water Resources and Hydro- power Engineering,2008,39(9):22-25(in Chinese). doi: 10.3969/j.issn.1000-0860.2008.09.007
    [2] 李小波, 吴 莉, 祝华平. 锦屏一级水电站左岸深部裂缝岩体灌浆试验研究[J]. 水电站设计, 2009, 25(91):54-56.

    LI Xiaobo, WU Li, ZHU Huaping. Experimental study on grouting of deep fractured rock mass on the left bank of Jinping I Hydropower Station[J]. Design of Hydroelectric Power Station,2009,25(91):54-56(in Chinese).
    [3] 林宝玉, 吴绍章. 混凝土工程材料设计与施工[M]. 第一版. 北京: 中国水利水电出版社, 1998.

    LIN Baoyu, WU Shaozhang. Concrete engineering material design and construction [M]. Beijing: China Water Power Press, 1998(in Chinese).
    [4] Schulze J. Influence of water-cement ratio and cement content on the properties of polymer- modified mortars[J]. Cement and Concrete Research,1999,29(6):909-915. doi: 10.1016/S0008-8846(99)00060-5
    [5] Ma H, Li Z. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms[J]. Construction and Building Materials,2013,47(Complete):579-587.
    [6] Liu S J, Hu Q Q, Zhao F Q, et al. Utilization of steel slag, iron tailings and fly ash as aggregates to prepare a polymer-modified waterproof mortar with a core–shell styrene– acrylic copolymer as the modifier[J]. Construction and Building Materials,2014,72:15-22. doi: 10.1016/j.conbuildmat.2014.09.016
    [7] 沈凡, 黄绍龙, 孙政, 等. 水性环氧树脂-水泥-乳化沥青复合胶结体系的硬化机理[J]. 中南大学学报(自然科学版), 2012, 43(1):105-110.

    SHEN Fan, HUANG Shaolong, SUN Zheng, et al. Hardening mechanism of waterborne epoxy- cement- emulsified asphalt bonding system[J]. Journal of Central South University,2012,43(1):105-110(in Chinese).
    [8] 李明, 徐文, 王康臣, 等. 高吸水树脂在水泥浆体硬化过程中的释水行为[J/OL]. 建筑材料学报: 1-10[2021-10-02].

    LI Ming, XU Wen, WANG KAngcheng, et al. Desorption Behavior of Superabsorbent Polymers in Cement Paste During Harden Process[J]. Journal of Building Materials, 2021, 1-10(in Chinese).
    [9] Shaker F A, Ei-Dieb A S, Reda M M. Durability of styrene-butadiene latex modified concrete[J]. Cement and Concrete Research,1997,27(5):311-720.
    [10] 文生, 叶家元, 王妍萍, 等. 掺杂有机大分子水化硅酸钙的孔结构及表面分形特征[J]. 硅酸盐学报, 2006(12):1497-1502. doi: 10.3321/j.issn:0454-5648.2006.12.015

    WEN Sheng, YE Jiayuan, WANG Yanping, et al. Pore structure and surface fractal characteristics of calcium silicatehydrates contained organic macromolecule[J]. Journal of the Chinese Ceramic Society,2006(12):1497-1502(in Chinese). doi: 10.3321/j.issn:0454-5648.2006.12.015
    [11] 佘安明, 马坤, 王中平, 姚武. 低场核磁共振低温 测孔技术表征硬化水泥浆体孔结构[J/OL]. 建筑材料学报: 1-10[2021-09-28].

    SHE Anming, MA Kun, WANG Zhongping, et al. Characterization of pore structure in hardened cement paste by low field NMR crvoporometry [J]. Journal of Building Materials, 2021, 1-10(in Chinese).
    [12] 陈宗丽, 李俊锋, 宋杨. 基于图像观测的硬化水 泥浆体孔径分析[J]. 硅酸盐通报, 2020, 39(2):440-446.

    CHEN Zhongli, LI Junfeng, SONG Yang. Pore size analysis of hardened cement paste based on image observation[J]. Bulletin of the Chinese Ceramic Society,2020,39(2):440-446(in Chinese).
    [13] Faure P F, CareS, Magat J, et al. Drying effect on cement paste porosity at early age observed by NMR methods[J]. Construction and Building Materials,2012,29:496-503. doi: 10.1016/j.conbuildmat.2011.07.012
    [14] Herschel W H, Bulkley R. Konsistenzmessungen von Gummi-Benzoll8sungen[J]. Kolloid-Z,1926,39(5):291-300.
    [15] 金伟良, 张军, 陈才生, 等. 基于压磁效应的钢筋混凝土疲劳研究新方法[J]. 建筑结构学报, 2016, 37(4):133-142.

    JIN Weiliang, ZHANG Jun, CHEN Caisheng, et al. A new method for fatigue study of reinforced concrete structures based on piezomagnetism[J]. Journal of Building Structures,2016,37(4):133-142(in Chinese).
    [16] 金伟良, 项凯潇, 毛江鸿, 等. 基于压磁效应的锈蚀钢筋应力状态检测试验研究[J]. 海洋工程, 2017, 35(6):62-70.

    JIN Wiliang, XIANG KAixiao, MAO Jianghong, et al. Experimental study on stress detection of corroded steel bars based on piezomagnetic effect[J]. The Ocean Engineering,2017,35(6):62-70(in Chinese).
    [17] 李月光, 伊书国, 张霖波, 等. 磁化水水泥混凝土研究现状与发展前景[J]. 材料科学与工程学报, 2019, 37(2):331-338.

    LI Yueguang, YIN Shuguo, ZHANG Linbo, et al. Recent and Prospective Research on Magnetized Water-based Concrete[J]. Journal of Materials Science and Engineering,2019,37(2):331-338(in Chinese).
    [18] 赵华玮, 代学灵, 曾宪桃, 等. 磁化水降低喷射混凝土粉尘含量的试验研究[J]. 采矿与安全工程学报, 2008(3):371-374. doi: 10.3969/j.issn.1673-3363.2008.03.026

    ZHAO Huawei, DAI Xuelin, ZENG Xiantao, et al. Experiment study on using magnetized water for decreasing shotcrete dust density[J]. Journal of Mining & Safety Engineering,2008(3):371-374(in Chinese). doi: 10.3969/j.issn.1673-3363.2008.03.026
    [19] 殷青英, 翁光远. 智能材料在结构振动控制中的应用研究[J]. 科技导报, 2009, 27(12):93-97. doi: 10.3321/j.issn:1000-7857.2009.12.019

    YIN Qingying, WENG Guangyuan. Applications of Intelligent Materials in Structural Vibration[J]. Science & Technology Review,2009,27(12):93-97(in Chinese). doi: 10.3321/j.issn:1000-7857.2009.12.019
    [20] 慕儒, 李辉, 王晓伟, 等. 单向分布钢纤维增强水泥基复合材料(II)制备及钢纤维增强作用[J]. 建筑材料学报, 2015, 18(3):388-392.

    MU Ru, LI Hui, WANG Xiaowei, et al. Aligned Steel Fibre Reinforced Cement Based Composites(Ⅱ): Preparation and Reinforcement of Aligned Steel Fibres[J]. Journal of Building Materials,2015,18(3):388-392(in Chinese).
    [21] 田稳苓, 马林翔, 张楷婕, 等. 定向钢纤维水泥基复合材料的纤维分布研究[J]. 建筑科学, 2016, 32(3):14-18.

    TIAN Wenlin, MA Linxiang, ZHANG KAijie, et al. Investigation of fibre distribution on aligned steel fibre cement-based composite materials[J]. Building Science,2016,32(3):14-18(in Chinese).
    [22] 慕儒, 赵全明, 田稳苓. 单向分布钢纤维增强水泥浆的制备与性能研究[J]. 河北工业大学学报, 2012, 41(2):101-104. doi: 10.3969/j.issn.1007-2373.2012.02.023

    MU Ru, ZHAO Quanming, TIAN Wenlin. Investigation on the preparation and properties of aligned steel fibre reinforce cement paste[J]. Journal of Hebei University of Technology,2012,41(2):101-104(in Chinese). doi: 10.3969/j.issn.1007-2373.2012.02.023
    [23] 宋贺月, 丁一宁. 钢纤维在混凝土基体中空间分布的研究方法评述[J]. 材料科学与工程学报, 2015, 33(5):768-775.

    SONG Heyue, DING Yining. Research Methods of Spatial Distribution of Steel Fiber in Concrete Matrix[J]. Journal of Materials Science and Engineering,2015,33(5):768-775(in Chinese).
    [24] Tang H S, KAlyon D M. Estimation of the parameters of Herschel-Bulkley fluid under wall sip using a combination of capillary and squeeze flow viscometers[J]. Rheologica Acta,2004,43(15):80-88.
    [25] Papanastasiou T C. Flows of materials with yield[J]. Jourmal of Rheology,1987,31(5):385-404. doi: 10.1122/1.549926
    [26] LI H PENG X C HEN W. A micro- to- macroscopic analysis for the yield stress of magne-torheological Fluids[C ]∥International Conference on Heterogeneous Materials Mechanics‚ Jun 21-26‚ 2004‚ Chongqing‚ China. (Chongqing: Chongqing University Press), 2004: 276-280.
    [27] 李海涛, 彭向和, 易成建. 附着颗粒对磁流变液偶极子链力学特性的影响[J]. 重庆大学学报, 2010, 33(7):81-85. doi: 10.11835/j.issn.1000-582X.2010.07.015

    LI Haitao, PENG Xianghe, YI Chengjian. Effect of attached particles on the mechanical properties of dipolar chains in magne- -torheological fluids[J]. Journal of Chongqing University,2010,33(7):81-85(in Chinese). doi: 10.11835/j.issn.1000-582X.2010.07.015
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 录用日期:  2022-03-12
  • 修回日期:  2022-03-10
  • 网络出版日期:  2022-04-01

目录

    /

    返回文章
    返回