留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛/铝层合板双面电子束焊接接头界面行为及力学性能

巩鹏飞 陈洪胜 王文先 柴斐 汪卓然 高会良

巩鹏飞, 陈洪胜, 王文先, 等. 钛/铝层合板双面电子束焊接接头界面行为及力学性能[J]. 复合材料学报, 2023, 40(0): 1-10
引用本文: 巩鹏飞, 陈洪胜, 王文先, 等. 钛/铝层合板双面电子束焊接接头界面行为及力学性能[J]. 复合材料学报, 2023, 40(0): 1-10
Pengfei GONG, Hongsheng CHEN, Wenxian WANG, Fei CHAI, Zhuoran WANG, Huiliang GAO. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica.
Citation: Pengfei GONG, Hongsheng CHEN, Wenxian WANG, Fei CHAI, Zhuoran WANG, Huiliang GAO. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica.

钛/铝层合板双面电子束焊接接头界面行为及力学性能

基金项目: 山西省重点研发计划;中央引导地方项目 (YDZJSX2022 A018);大学生创新创业训练计划项目 (20210078)
详细信息
    通讯作者:

    陈洪胜,博士,副教授,硕士研究生导师,研究方向为先进金属基复合材料制备及成形技术 E-mail: chenhongsheng@tyut.edu.cn

  • 中图分类号: TB331

Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates

Funds: Key R&D Plan of Shanxi Province; The central government guides local projects (YDZJSX2022 A018); Innovation and Entrepreneurship training program for college students (20210078)
  • 摘要: Ti/Al层状复合板既具有钛合金高强度、耐高温、耐腐蚀的优势,同时也满足铝合金轻量化的特点,在航空航天、汽车制造、水下航行等领域具有重要的应用前景。在一些特殊的工况下,需涉及到层状复合板之间的连接问题,其中,焊接方法最为常用。但由于焊接过程中Ti/Al界面处容易生成大量的金属间化合物,导致其焊接接头成形性能较差,严重限制了它的实际应用。本文通过将热压态Ti/Al层状复合板进行电子束焊接,采用双面焊接的方式实现Ti/Al层状复合板的焊接成形,它可以有效的降低焊接过程中Ti-Al金属间化合物的形成,从而提高焊接接头的力学性能。由于钛合金的高熔点和较大的元素结合能,在焊接过程中的相同温度下,铝原子向钛层扩散比较容易,而钛原子向铝层几乎不扩散,这在一定程度上也减少了Ti-Al金属间化合物的生成。因此,相较于单面焊,先Al后Ti双面焊得到的焊接接头力学性能良好,抗拉强度和延伸率分别达到了304.6 MPa和10.4%。Ti/Al层状复合板电子束焊接接头界面行为:(a)焊接设备及方案示意图;(b)焊接接头成形示意图;(c)焊接接头界面行为

     

  • 图  1  示意图:(a)热压工艺流程;(b)电子束焊接(EBW)设备原理;(c)焊接方式

    Figure  1.  Schematic diagram: (a) Hot pressing process flow; (b) Principle of vacuum electron beam welding (EBW) equipment; (c) Welded types

    图  2  Type A焊接接头微观形貌: (a, c) 60 mA;(b, d) 70 mA

    Figure  2.  Type A microstructure of welded joint: (a, c) 60 mA; (b, d) 70 mA

    图  3  Type B焊接接头微观组织形貌:(a) Ti/Al界面处;(b) Ti层FZ处;(c) Al层FZ处;(d) Al层HAZ和BM处

    Figure  3.  Type B microstructure of welded joint: (a) Ti/Al interface; (b) Ti layer FZ; (c) Al layer FZ; (d) Al layer HAZ and BM

    图  4  Type C焊接接头成形示意图:(a) 70 mA;(b) 75 mA;(c) 80 mA

    Figure  4.  Type C welding joint forming diagram: (a) 70 mA; (b) 75 mA; (c) 80 mA

    图  5  焊接接头成形示意图:(a) Type A;(b) Type B;(c) Type C

    Figure  5.  Welding joint forming diagram: (a) Type A; (b) Type B; (c) Type C

    图  6  焊接接头熔合区界面处EDS图谱:(a)界面处SEM形貌;(b)面扫图;(c)线扫图;(d)点扫图

    Figure  6.  EDS spectrum at the interface of fusion zone: (a) SEM morphology at the interface; (b) The map scanning; (c) The line scanning; (d) The point scanning

    图  7  Type C焊接接头XRD图谱

    Figure  7.  XRD pattern of Type C welded joint

    图  8  Type C焊接接头显微硬度:(a) 沿焊缝深度方向;(b)垂直焊缝方向

    Figure  8.  Type C microhardness of welded joint: (a) Along the depth of the weld; (b) Vertical weld direction

    图  9  Type C焊接接头拉伸性能:(a) 应力-应变曲线;(b)极限抗拉强度、屈服强度和延伸率

    Figure  9.  Type C Tensile properties of welded joints: (a) Stress-strain curve; (b) UTS、YS and EL

    图  10  Type C焊接接头断口形貌:(a)宏观图;(b) 断口EDS图;(c) Ti/Al界面处;(d) (c)中b放大处;(e) (c)中EDS面扫图;(f)Ti层;(g, h) Al层

    Figure  10.  Type C Fracture profile of welded joint: (a) Macrograph; (b) Fracture EDS; (c) Ti/Al interface; (d) (c) Put a large area in b; (e) (c) EDS scanning map; (f) Ti layer; (g, h) Al layer

    表  1  TC4钛合金化学成分(wt.%)

    Table  1.   Chemical composition of TC4 titanium alloy(wt.%)

    TiAlVFeOCNH
    Bal6.24.00.250.150.0980.010.004
    下载: 导出CSV

    表  2  6061铝合金化学成分(wt.%)

    Table  2.   Chemical composition of 6061 aluminum alloy(wt.%)

    AlMgTiSiZnFeCuMnCr
    Bal1.050.10.620.180.410.20.120.17
    下载: 导出CSV

    表  3  EBW工艺参数

    Table  3.   EBW process parameters

    Electron
    beam
    current/mA
    Single-side welding
    (Type A)
    Double-side welding
    Type BType C
    Ti side60/70/8050/60/6570/75/80
    Al side40/4543/45
    下载: 导出CSV

    表  4  不同温度下Ti-Al IMCs的吉布斯自由能[19]

    Table  4.   Gibbs free energy of Ti-Al IMCs at different temperatures[19]

    IMCsGibbs free energy, ΔGf
    TiAl3−40349.6+10.37T
    TiAl−37445.1+16.79T
    Ti3Al−29633.6+6.71T
    TiAl2−43858.4+11.02T
    Ti2Al5−40495.4+9.53T
    下载: 导出CSV
  • [1] 李蕊, 王浩. Ti811和TC4钛合金基材属性对激光熔覆自润滑耐磨复合涂层组织与性能的影响[J/OL]. 复合材料学报: 1-11

    2022-11-10]. LI Rui, WANG Hao. Effect of Ti811 and TC4 titanium alloy substrate on microstructure and properties of laser cladding self-lubricating composite coatings[J/OL]. Acta Materiae Compositae Sinica, 1-11[2022-11-10](in Chinese).
    [2] CHEN Chao, SUN Guorui, DU Wenbo, et al. Influence of heat input on the appearance, microstructure and microhardness of pulsed gas metal arc welded Al alloy weldment[J]. Journal of Materials Research and Technology,2022,21:121-130. doi: 10.1016/j.jmrt.2022.09.028
    [3] MO Taiqian, CHEN Jie, CHEN Zejun, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion ARBed Al/Ti laminated composites[J]. Materials Characte-rization,2020,170:110731. doi: 10.1016/j.matchar.2020.110731
    [4] XU Mingfang, CHEN Yuhua, ZHANG Timing, et al. Microstructure evolution and mechanical properties of wrought/wire arc additive manufactured Ti-6 Al-4 V joints by electron beam welding[J]. Materials Characterization,2022,190:112090. doi: 10.1016/j.matchar.2022.112090
    [5] 陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程, 2018, 10(1):31-39. doi: 10.3969/j.issn.1674-6457.2018.01.004

    CHEN Guoqing, SHU Xi, LIU Junpeng, et al. Development Status of Applications of Vacuum Electron Beam Welding Technology[J]. Journal of Netshape Forming Engineering,2018,10(1):31-39(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.01.004
    [6] 范林好. Re/GH3128电子束焊接接头组织和力学性能研究[D]. 上海工程技术大学, 2021.

    FAN Linhao. Study on microstructure and mechanical properties of Re/GH3128 electron beam welded joint[D]. Shanghai University Of Engineering Science, 2021(in Chinese).
    [7] 曲树平. 7075/TC4(TA1)异种金属电子束焊接工艺及机理研究[D]. 兰州理工大学, 2019.

    QU Shuping. Study on electron beam welding process and mechanism of 7075/TC4(TA1) dissimilar metals[D]. Lanzhou University of Technology, 2019(in Chinese).
    [8] 赵啸, 高恩志, 徐荣正. 铜/铝异质金属层状复合板搅拌摩擦焊接技术研究[J]. 稀有金属材料与工程, 2022, 51(5):1752-1758.

    ZHAO Xiao, GAO Enzhi, XU Rongzheng. Study on friction stir welding technology of Copper/aluminum heterogeneous metal laminated plate[J]. Rare Metal Materials and Engineering,2022,51(5):1752-1758(in Chinese).
    [9] 李福山. 铝/铜复合板电子束焊接技术研究[D]. 沈阳航空航天大学, 2020.

    LI Fushan. Study on electron beam welding technology of Al/Cu composite plate[D]. Shenyang Aerospace University, 2020(in Chinese).
    [10] 王毅. Ti/Al异种金属电子束熔钎焊重熔改性连接工艺研究[D]. 南京理工大学, 2018.

    WANG Yi. Study on modified bonding technology of Ti/Al dissimilar metals by electron beam welding and brazing[D]. Nanjing University of Science and Technology, 2018(in Chinese).
    [11] 吴新勇, 廖娟, 薛新, 等. 钛/铝异种合金脉冲激光焊接接头裂纹产生机理[J]. 精密成形工程, 2018, 10(6):95-101. doi: 10.3969/j.issn.1674-6457.2018.06.016

    WU Xinyong, LIAO Juan, XUE Xin, et al. Crack generation mechanism of pulsed laser welded joint of Ti/Al dissimilar alloy[J]. Precision forming engineering,2018,10(6):95-101(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.06.016
    [12] 吴新勇. 钛/铝异种轻合金脉冲激光焊接工艺及接头性能研究[D]. 福州大学, 2020.

    WU Xinyong. Study on pulse laser welding technology and joint properties of Ti/Al dissimilar light alloy[D]. Fuzhou University, 2020(in Chinese).
    [13] LIU Junpeng, CHEN Guoqing, MA Yaorui, et al. Formation mechanism and control of welding cracks in dissimilar materials of Ni50 Ti50 SMA and Ti-6 Al-4 V[J]. Journal of Manufacturing Processes,2022,75:552-564. doi: 10.1016/j.jmapro.2022.01.014
    [14] 宋玉强, 马圣东, 李世春. Al/Ti扩散层形成的扩散溶解机制[J]. 焊接学报, 2014, 35(6):49-52+89+115.

    SONG Yuqiang, MA Shengdong, LI Shichun. Diffusion dissolution mechanism of Al/Ti diffusion layer formation[J]. Transactions of the China Welding Institution,2014,35(6):49-52+89+115(in Chinese).
    [15] 韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J]. 中国有色金属学报, 2020, 30(6):1270-1280. doi: 10.11817/j.ysxb.1004.0609.2020-35787

    HAN Jianchao, LIU Chang, JIA Yi, et al. Research progress of Ti/Al composite plates[J]. The Chinese Journal of Nonferrous Metals,2020,30(6):1270-1280(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-35787
    [16] LU Rihuan, LIUYutong, YAN Meng, et al. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding[J]. Journal of Materials Processing Tech.,2021,297:117246. doi: 10.1016/j.jmatprotec.2021.117246
    [17] PUKENAS A, CHEKHONIN P, SCHARNWEBER J, et al. TiAl-based semi-finished material produced by reaction annealing of Ti/Al layered composite sheets[J]. Materials Today Communications,2022,30:103083. doi: 10.1016/j.mtcomm.2021.103083
    [18] LESLIE Glasser. Additive single atom values for thermodynamics II: Enthalpies, entropies and Gibbs energies for formation of ionic solids[J]. Chemical Thermodynamics and Thermal Analysis,2022,7:100069. doi: 10.1016/j.ctta.2022.100069
    [19] KATTNER U R, LIN J C, CHANG Y A. Thermodynamic assessment and calculation of the Ti-Al system[J]. Metallurgical Transaction A,1992,23:2081-2090. doi: 10.1007/BF02646001
    [20] 孙彦波, 马凤梅, 肖文龙, 等. Ti-Al系金属间化合物基叠层结构材料的制备技术与组织性能特征[J]. 航空材料学报, 2014, 34(4):98-111. doi: 10.11868/j.issn.1005-5053.2014.4.010

    SUN Yanbo, MA Fengmei, XIAO Wenlong, et al. Preparation technology and microstructure properties of Ti-Al intermetallic compound based lamination materials[J]. Journal of Aeronautical Materials,2014,34(4):98-111(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.010
    [21] 袁树春, 章文滔, 陈玉华, 等. 焊接工艺参数对Ti/Al异种金属磁脉冲焊接接头微观组织及力学性能的影响[J]. 电焊机, 2022, 52(6):118-125. doi: 10.7512/j.issn.1001-2303.2022.06.15

    YUAN Shuchun, ZHANG Wentao, CHEN, Yuhua, et al. Effects of welding parameters on microstructure and mechanical properties of Ti/Al dissimilar metal magnetic pulse welded joints[J]. Electric Welding Machine,2022,52(6):118-125(in Chinese). doi: 10.7512/j.issn.1001-2303.2022.06.15
    [22] 张立辉. 使用高熵合金填充材料的钛合金/铝合金激光搭接焊接头组织与性能研究[D]. 吉林大学, 2022.

    ZHANG Lihui. Microstructure and properties of laser lap joints of Titanium/aluminum alloy using high entropy alloy filler materials[D]. Jilin University, 2022(in Chinese).
  • 加载中
计量
  • 文章访问数:  134
  • HTML全文浏览量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2022-12-13
  • 录用日期:  2022-12-14
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回