Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates
-
摘要:
Ti/Al层状复合板既具有钛合金高强度、耐高温、耐腐蚀的优势,同时也满足铝合金轻量化的特点,在航空航天、汽车制造、水下航行等领域具有重要的应用前景。在一些特殊的工况下,需涉及到层状复合板之间的连接问题,其中,焊接方法最为常用。但由于焊接过程中Ti/Al界面处容易生成大量的金属间化合物,导致其焊接接头成形性能较差,严重限制了它的实际应用。本文通过将热压态Ti/Al层状复合板进行电子束焊接,采用双面焊接的方式实现Ti/Al层状复合板的焊接成形,它可以有效的降低焊接过程中Ti-Al金属间化合物的形成,从而提高焊接接头的力学性能。由于钛合金的高熔点和较大的元素结合能,在焊接过程中的相同温度下,铝原子向钛层扩散比较容易,而钛原子向铝层几乎不扩散,这在一定程度上也减少了Ti-Al金属间化合物的生成。因此,相较于单面焊,先Al后Ti双面焊得到的焊接接头力学性能良好,抗拉强度和延伸率分别达到了304.6 MPa和10.4%。 Ti/Al层状复合板电子束焊接接头界面行为:(a)焊接设备及方案示意图;(b)焊接接头成形示意图;(c)焊接接头界面行为 -
关键词:
- Ti/Al层状复合板 /
- 电子束焊接 /
- 焊接接头 /
- 界面行为 /
- 力学性能
Abstract: Ti/Al laminated composite plates have the advantages of high strength and corrosion resistance of titanium alloy, light weight and low price of aluminum alloy, and have a wide range of potential applications in aerospace, automobile manufacturing, underwater equipment and other fields. In order to investigate the connection behavior of Ti/Al laminated composite members, vacuum electron beam welding (EBW) was used to weld Ti/Al laminated composite members, and the microstructure, interface behavior and mechanical properties of the welded joints were studied. The results showed that: Compared with single-side welding, the mechanical properties of welded Ti/Al laminated composite plates can be effectively improved by double-sided Al welding followed by Ti welding. There are no obvious defects at the interface of welded Ti/Al joints, and there are obvious intermetallic compounds (IMCs) layers at the interface of welded Ti/Al joints. The formation sequence of the compounds is TiAl3, TiAl and TiAl2. TiAl2 is the product of a series of reactions in which TiAl is used as an intermediate. Under the condition that the electron beam of Al layer remains unchanged at 43 mA, with the increase of the electron beam of Ti layer, the tensile strength and elongation of the welded joint both increase first and then decrease. The maximum tensile strength and elongation can reach 304.6 MPa and 10.4%, which is 57% of the strength of the base metal. The fracture mechanism of welded joint is mainly brittle fracture at IMCs position. -
表 1 TC4钛合金化学成分(wt.%)
Table 1. Chemical composition of TC4 titanium alloy(wt.%)
Ti Al V Fe O C N H Bal 6.2 4.0 0.25 0.15 0.098 0.01 0.004 表 2 6061铝合金化学成分(wt.%)
Table 2. Chemical composition of 6061 aluminum alloy(wt.%)
Al Mg Ti Si Zn Fe Cu Mn Cr Bal 1.05 0.1 0.62 0.18 0.41 0.2 0.12 0.17 表 3 EBW工艺参数
Table 3. EBW process parameters
Electron
beam
current/mASingle-side welding
(Type A)Double-side welding Type B Type C Ti side 60/70/80 50/60/65 70/75/80 Al side — 40/45 43/45 -
[1] 李蕊, 王浩. Ti811和TC4钛合金基材属性对激光熔覆自润滑耐磨复合涂层组织与性能的影响[J/OL]. 复合材料学报: 1-112022-11-10]. LI Rui, WANG Hao. Effect of Ti811 and TC4 titanium alloy substrate on microstructure and properties of laser cladding self-lubricating composite coatings[J/OL]. Acta Materiae Compositae Sinica, 1-11[2022-11-10](in Chinese). [2] CHEN Chao, SUN Guorui, DU Wenbo, et al. Influence of heat input on the appearance, microstructure and microhardness of pulsed gas metal arc welded Al alloy weldment[J]. Journal of Materials Research and Technology,2022,21:121-130. doi: 10.1016/j.jmrt.2022.09.028 [3] MO Taiqian, CHEN Jie, CHEN Zejun, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion ARBed Al/Ti laminated composites[J]. Materials Characte-rization,2020,170:110731. doi: 10.1016/j.matchar.2020.110731 [4] XU Mingfang, CHEN Yuhua, ZHANG Timing, et al. Microstructure evolution and mechanical properties of wrought/wire arc additive manufactured Ti-6 Al-4 V joints by electron beam welding[J]. Materials Characterization,2022,190:112090. doi: 10.1016/j.matchar.2022.112090 [5] 陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程, 2018, 10(1):31-39. doi: 10.3969/j.issn.1674-6457.2018.01.004CHEN Guoqing, SHU Xi, LIU Junpeng, et al. Development Status of Applications of Vacuum Electron Beam Welding Technology[J]. Journal of Netshape Forming Engineering,2018,10(1):31-39(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.01.004 [6] 范林好. Re/GH3128电子束焊接接头组织和力学性能研究[D]. 上海工程技术大学, 2021.FAN Linhao. Study on microstructure and mechanical properties of Re/GH3128 electron beam welded joint[D]. Shanghai University Of Engineering Science, 2021(in Chinese). [7] 曲树平. 7075/TC4(TA1)异种金属电子束焊接工艺及机理研究[D]. 兰州理工大学, 2019.QU Shuping. Study on electron beam welding process and mechanism of 7075/TC4(TA1) dissimilar metals[D]. Lanzhou University of Technology, 2019(in Chinese). [8] 赵啸, 高恩志, 徐荣正. 铜/铝异质金属层状复合板搅拌摩擦焊接技术研究[J]. 稀有金属材料与工程, 2022, 51(5):1752-1758.ZHAO Xiao, GAO Enzhi, XU Rongzheng. Study on friction stir welding technology of Copper/aluminum heterogeneous metal laminated plate[J]. Rare Metal Materials and Engineering,2022,51(5):1752-1758(in Chinese). [9] 李福山. 铝/铜复合板电子束焊接技术研究[D]. 沈阳航空航天大学, 2020.LI Fushan. Study on electron beam welding technology of Al/Cu composite plate[D]. Shenyang Aerospace University, 2020(in Chinese). [10] 王毅. Ti/Al异种金属电子束熔钎焊重熔改性连接工艺研究[D]. 南京理工大学, 2018.WANG Yi. Study on modified bonding technology of Ti/Al dissimilar metals by electron beam welding and brazing[D]. Nanjing University of Science and Technology, 2018(in Chinese). [11] 吴新勇, 廖娟, 薛新, 等. 钛/铝异种合金脉冲激光焊接接头裂纹产生机理[J]. 精密成形工程, 2018, 10(6):95-101. doi: 10.3969/j.issn.1674-6457.2018.06.016WU Xinyong, LIAO Juan, XUE Xin, et al. Crack generation mechanism of pulsed laser welded joint of Ti/Al dissimilar alloy[J]. Precision forming engineering,2018,10(6):95-101(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.06.016 [12] 吴新勇. 钛/铝异种轻合金脉冲激光焊接工艺及接头性能研究[D]. 福州大学, 2020.WU Xinyong. Study on pulse laser welding technology and joint properties of Ti/Al dissimilar light alloy[D]. Fuzhou University, 2020(in Chinese). [13] LIU Junpeng, CHEN Guoqing, MA Yaorui, et al. Formation mechanism and control of welding cracks in dissimilar materials of Ni50 Ti50 SMA and Ti-6 Al-4 V[J]. Journal of Manufacturing Processes,2022,75:552-564. doi: 10.1016/j.jmapro.2022.01.014 [14] 宋玉强, 马圣东, 李世春. Al/Ti扩散层形成的扩散溶解机制[J]. 焊接学报, 2014, 35(6):49-52+89+115.SONG Yuqiang, MA Shengdong, LI Shichun. Diffusion dissolution mechanism of Al/Ti diffusion layer formation[J]. Transactions of the China Welding Institution,2014,35(6):49-52+89+115(in Chinese). [15] 韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J]. 中国有色金属学报, 2020, 30(6):1270-1280. doi: 10.11817/j.ysxb.1004.0609.2020-35787HAN Jianchao, LIU Chang, JIA Yi, et al. Research progress of Ti/Al composite plates[J]. The Chinese Journal of Nonferrous Metals,2020,30(6):1270-1280(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-35787 [16] LU Rihuan, LIUYutong, YAN Meng, et al. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding[J]. Journal of Materials Processing Tech.,2021,297:117246. doi: 10.1016/j.jmatprotec.2021.117246 [17] PUKENAS A, CHEKHONIN P, SCHARNWEBER J, et al. TiAl-based semi-finished material produced by reaction annealing of Ti/Al layered composite sheets[J]. Materials Today Communications,2022,30:103083. doi: 10.1016/j.mtcomm.2021.103083 [18] LESLIE Glasser. Additive single atom values for thermodynamics II: Enthalpies, entropies and Gibbs energies for formation of ionic solids[J]. Chemical Thermodynamics and Thermal Analysis,2022,7:100069. doi: 10.1016/j.ctta.2022.100069 [19] KATTNER U R, LIN J C, CHANG Y A. Thermodynamic assessment and calculation of the Ti-Al system[J]. Metallurgical Transaction A,1992,23:2081-2090. doi: 10.1007/BF02646001 [20] 孙彦波, 马凤梅, 肖文龙, 等. Ti-Al系金属间化合物基叠层结构材料的制备技术与组织性能特征[J]. 航空材料学报, 2014, 34(4):98-111. doi: 10.11868/j.issn.1005-5053.2014.4.010SUN Yanbo, MA Fengmei, XIAO Wenlong, et al. Preparation technology and microstructure properties of Ti-Al intermetallic compound based lamination materials[J]. Journal of Aeronautical Materials,2014,34(4):98-111(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.010 [21] 袁树春, 章文滔, 陈玉华, 等. 焊接工艺参数对Ti/Al异种金属磁脉冲焊接接头微观组织及力学性能的影响[J]. 电焊机, 2022, 52(6):118-125. doi: 10.7512/j.issn.1001-2303.2022.06.15YUAN Shuchun, ZHANG Wentao, CHEN, Yuhua, et al. Effects of welding parameters on microstructure and mechanical properties of Ti/Al dissimilar metal magnetic pulse welded joints[J]. Electric Welding Machine,2022,52(6):118-125(in Chinese). doi: 10.7512/j.issn.1001-2303.2022.06.15 [22] 张立辉. 使用高熵合金填充材料的钛合金/铝合金激光搭接焊接头组织与性能研究[D]. 吉林大学, 2022.ZHANG Lihui. Microstructure and properties of laser lap joints of Titanium/aluminum alloy using high entropy alloy filler materials[D]. Jilin University, 2022(in Chinese). -

计量
- 文章访问数: 134
- HTML全文浏览量: 138
- 被引次数: 0