留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构型参数及方式对Al2O3p/高锰钢球形网络复合材料压缩性能的影响

寇宝弘 卢德宏 龚文豪 张翼 王宇

寇宝弘, 卢德宏, 龚文豪, 等. 构型参数及方式对Al2O3p/高锰钢球形网络复合材料压缩性能的影响[J]. 复合材料学报, 2022, 39(0): 1-11
引用本文: 寇宝弘, 卢德宏, 龚文豪, 等. 构型参数及方式对Al2O3p/高锰钢球形网络复合材料压缩性能的影响[J]. 复合材料学报, 2022, 39(0): 1-11
Baohong KOU, Dehong LU, Wenhao GONG, Yi ZHANG, Yu WANG. Influence of architecture parameter and mode on compressive properties of an Al2O3p/high manganese steel spherical interpenetrating composite[J]. Acta Materiae Compositae Sinica.
Citation: Baohong KOU, Dehong LU, Wenhao GONG, Yi ZHANG, Yu WANG. Influence of architecture parameter and mode on compressive properties of an Al2O3p/high manganese steel spherical interpenetrating composite[J]. Acta Materiae Compositae Sinica.

构型参数及方式对Al2O3p/高锰钢球形网络复合材料压缩性能的影响

基金项目: 国家自然科学基金 (51865024)
详细信息
    通讯作者:

    卢德宏,博士,教授,博士生导师,研究方向为金属基复合材料 E-mail: mailto: ldhkust1@hotmail.com

  • 中图分类号: TB333

Influence of architecture parameter and mode on compressive properties of an Al2O3p/high manganese steel spherical interpenetrating composite

  • 摘要: 传统的耐磨金属基复合材料普遍存在塑韧性低的问题。对氧化铝颗粒(Al2O3p)增强高锰钢复合材料进行球形网络构型设计,研究了构型方式、参数及热处理对复合材料压缩性能的影响。制备了三种构型参数(球径φ分别为6 mm、7 mm、8 mm)结合两种构型方式(平行、错落)的Al2O3p/高锰钢球形网络复合材料、均匀复合材料和基体材料。结果表明:同构型方式下,随着构型参数(复合区体积分数)的增加,材料的压缩性能降低,其中φ6材料的屈服强度、抗压强度和(抗压强度下)应变最佳,相比于均匀复合材料分别提升203.8%、236.1%和134.8%,屈服强度相比于基体材料提升107.5%;同构型参数下,错落排布比平行排布的屈服强度、抗压强度和应变分别提升10.9%、28.5%和16.3%;水韧处理后,错落排布材料的屈服强度降低35.2%,抗压强度提升11.0%,应变提升163.1%。裂纹易在基体区与复合区界面处萌生并进行扩展,基体能够阻碍裂纹的扩展;错落排布增大了复合区的最小间距,提升了塑性。

     

  • 图  1  球形网络复合材料示意图

    Figure  1.  Schematic diagram of spherical interpenetrating composites: (a) Mold; (b) Stencil; (c) Structured ceramic preform; (d) Parallel; (e) Staggered

    图  2  Al2O3p/高锰钢球形网络复合材料微观结构

    Figure  2.  Microstructure of Al2O3p/high manganese steel spherical interpenetrating composite: (a) Matrix zone before heat treatment; (b) Matrix zone after heat treatment; (c) Composite zone before heat treatment; (d) Composite zone after heat treatment

    图  3  Al2O3p/高锰钢球形网络复合材料界面成分EDS分析

    Figure  3.  EDS analysis of interfacial components of Al2O3p/high manganese steel spherical interpenetrating composite

    图  4  Al2O3p/高锰钢球形网络复合材料XRD物相分析

    Figure  4.  XRD physical phase analysis of Al2O3p/high manganese steel spherical interpenetrating composite

    图  5  Al2O3p/高锰钢球形网络复合材料、均匀复合材料和基体材料的压缩应力-应变曲线

    Figure  5.  Compressive stress-strain curves of Al2O3p/high manganese steel spherical interpenetrating composites, uniformly dispersed composite, and matrix materials

    图  6  Al2O3p/高锰钢球型网络复合材料构型方式的结构示意图

    Figure  6.  Schematic diagram of architectured methods of Al2O3p/high manganese steel spherical interpenetrating composites: (a) Observation direction; (b) Parallel; (c) Staggered

    图  7  相同构型参数下平行排布与错落排布Al2O3p/高锰钢球形网络复合材料的应力-应变曲线

    Figure  7.  Compressive stress-strain curves of parallel-arrany and staggered-arrany Al2O3p/high manganese steel spherical interpenetrating composites with the same architectured parameter

    图  8  l2O3p/高锰钢球形网络复合材料、均匀复合材料和基体材料热处理前后的应力-应变曲线

    Figure  8.  Compressive stress-strain curves of Al2O3p/high manganese steel spherical interpenetrating composites, uniformly dispersed composite, and matrix materials before and after heat treatment: (a) Matrix material; (b) Uniformly dispersed composite; (c) Spherical interpenetrating composite

    图  9  Al2O3p/高锰钢球形网络复合材料表面裂纹

    Figure  9.  Surface cracks of Al2O3p/high manganese steel spherical interpenetrating composites: (a) Al2O3p(φ6-P)/HMS; (b) Al2O3p(φ7-P)/HMS; (c) Al2O3p(φ8-P)/HMS; (d) Al2O3p(φ8-S)/HMS

    图  10  Al2O3p/高锰钢球形网络复合材料压缩失效后的微观形貌

    Figure  10.  Microscopic morphology after compression failure of Al2O3p/high manganese steel spherical interpenetrating composite: (a) Composite zone; (b) Enlarged composite zone; (c) Minimum wall thickness; (d) Enlarged minimum wall thickness

    图  11  Al2O3p/高锰钢球形网络复合材料的三维重构形貌

    Figure  11.  3D reconstructed shape of Al2O3p/high manganese steel spherical interpenetrating composite: (a) Macro; (b) Composite zone; (c) Overall shape

    图  12  Al2O3p/高锰钢球形网络复合材料内部裂纹扩展CT照片

    Figure  12.  CT photos of internal crack extension of Al2O3p/high manganese steel spherical interpenetrating composite

    表  1  各试验材料信息

    Table  1.   Information of researched materials

    CodenameArchitecture methodArchitecture paramter
    /mm
    Composite zone fraction/vol%
    HMS--0
    Al2O3p/HMS--100
    Al2O3p(φ6-P)
    /HMS
    Parallel615.6
    Al2O3p(φ7-P)
    /HMS
    Parallel724.6
    Al2O3p(φ8-P)
    /HMS
    Parallel836.8
    Al2O3p(φ8-S)
    /HMS
    Staggered836.8
    Al2O3p(φ8-S)
    /HMS(H)
    Staggered836.8
    Al2O3p/HMS(H)--100
    HMS(H)--0
    Notes:Al2O3p—Al2O3 ceramic particle; HMS—High manganese steel; φ—Ball diameter; P—Parallel-arrany; S—Staggered-arrany; H—Heat treatment.
    下载: 导出CSV

    表  2  Al2O3p/高锰钢球形网络复合材料界面成分 wt%

    Table  2.   Interfacial composition of Al2O3p/high manganese steel spherical interpenetrating composite wt%

    Area\
    Elements
    AlOSiCrMnFe
    Al2O346.342.20.3-0.7-
    Interface14.721.811.60.622.24.7
    Matrix--0.41.910.378.9
    下载: 导出CSV

    表  3  Al2O3p/高锰钢球形网络复合材料、均匀复合材料和基体材料的压缩性能

    Table  3.   Compressive properties for Al2O3p/high manganese steel spherical interpenetrating composites, uniformly dispersed composite, and matrix materials

    CodenameYield
    strength/MPa
    Compressive strength/MPaStrain
    HMS528.3--
    Al2O3p/HMS360.8396.80.023
    Al2O3p(φ6-P)/HMS1096.41333.60.054
    Al2O3p(φ7-P)/HMS1048.61301.10.052
    Al2O3p(φ8-P)/HMS867.51053.50.049
    下载: 导出CSV

    表  4  相同构型参数下平行排布与错落排布的Al2O3p/高锰钢球形网络复合材料压缩性能

    Table  4.   Compression property for parallel-arrany and staggered-arrany Al2O3p/high manganese steel spherical interpenetrating composites with the same architectured parameter

    CodenameYield
    strength/
    MPa
    Compressive strength/
    MPa
    Strain
    Al2O3p(φ8-P)/HMS867.51053.50.049
    Al2O3p(φ8-S)/HMS962.11354.00.057
    下载: 导出CSV

    表  5  Al2O3p/高锰钢球形网络复合材料、均匀复合材料和基体材料热处理前后的压缩性能

    Table  5.   Compressive properties for Al2O3p/high manganese steel spherical interpenetrating composites, uniformly dispersed composite, and matrix materials before and after heat treatment

    CodenameYield
    strength/MPa
    Compressive strength/MPaStrain
    HMS528.3--
    Al2O3p/HMS360.8396.80.023
    Al2O3p(φ8-S)/HMS962.11354.00.057
    Al2O3p(φ8-S)/HMS(H)623.71503.80.150
    Al2O3p/HMS(H)305.8338.40.030
    HMS(H)406.9--
    下载: 导出CSV
  • [1] MORALES-ESPEJEL G E, RYCERZ P, KADIRIC A, et al. Prediction of micropitting damage in gear teeth contacts considering the concurrent effects of surface fatigue and mild wear[J]. Wear,2018(398-399):99-115.
    [2] MARIMUTHU K P, HAN J, JEONG U, et al. Study on tribological characteristics of Zr-based BMG via nanoscratch techniques[J]. Wear,2021(486-487):204067.
    [3] MACHADO P C, PEREIRA J I, SINATORA A, et al. Abra sion wear of austenitic manganese steels via jaw crusher test[J]. Wear,2021(476):203726.
    [4] 胥长龙, 卢德宏, 唐露, 等. 复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响[J]. 复合材料学报, 2020, 37(9):2223-2229.

    XU C L, LU D H, TANG L, et al. Effect of composite volume fraction on impact wear proper ties of zirconium oxide toughene alumina particles/40Cr architecture composites[J]. Acta Materiae Compositae Sinica,2020,37(9):2223-2229(in Chinese).
    [5] PAGOUNIS E, LINDROOS V K, TALVITIE M. Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1996,27:4171-4181. doi: 10.1007/BF02595665
    [6] 王娟, 郑开宏. ZTA颗粒增强铁基复合材料的高温磨料磨损性能研究[J]. 热加工工艺, 2018, 47(10):101-105,109.

    WANG J, ZHENG K H. Study on High Temperature Abrasive Wear Properties of ZTA Particle Reinforced Iron Matrix Composites[J]. Hot Working Technology,2018,47(10):101-105,109(in Chinese).
    [7] 宁嘉沛, 郑开宏, 王娟, 等. TiC增强高锰钢基复合材料的组织与磨料磨损性能[J]. 稀有金属材料与工程, 2020, 49(7):2407-2416.

    NING J P, ZHENG K H, WANG J, et al. Microstructure and Abrasive Wear Properties of TiC-Reinforced Hadfield Steel Matrix Composites[J]. Rare Metal Materials and Engineering,2020,49(7):2407-2416(in Chinese).
    [8] 陈奉锐, 山泉, 李祖来, 等. 重熔温度对WCp/Fe复合材料界面特征及压缩断裂机制的影响[J]. 复合材料学报, 2018, 35(11):3106-3113.

    CHEN F R, SHAN Q, LI Z L, et al. Effect of remelting temperature on interface characteristics and com pression fracture mechanism of WCP/Fe composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3106-3113(in Chinese).
    [9] LI Y, PHUNG L, WILLIAMS C. 3D multiscale modeling of fracture in metal matrix composites[J]. Journal of Materials Research,2019,34(13):2285-2294. doi: 10.1557/jmr.2019.60
    [10] GUO R F, SHEN P, GUO N, et al. Al-7Si-5Cu/Al2O3-ZrO2 Laminated Composites with Excellent and Anisotropic Wear Resistance[J]. Advanced Engineering Materials,2018,20:1800540. doi: 10.1002/adem.201800540
    [11] 卢德宏, 蒋业华. 构型陶瓷/钢铁耐磨复合材料研究进展[J]. 精密成型工程, 2021, 13(3):40-48.

    LU D H, JIANG Y H. Research Progress of Wear Performance of Ceramic Particulates Reinforced Iron Matrix Architecture Composites[J]. Journal of Netshape Forming Engineering,2021,13(3):40-48(in Chinese).
    [12] LEMSTER K, DELPORTE A, GRAULE T, et al. Activation of alumina foams for fabricating MMCs by pressureless infiltration[J]. Ceramics International,2007,33:1179-1185. doi: 10.1016/j.ceramint.2006.04.002
    [13] ZHOU M J, SUI Y D, CHONG X Y, et al. Wear Resistance Mechanism of ZTAP/HCCI Composites with a Honeycomb Structure[J]. Metals,2018,8:588. doi: 10.3390/met8080588
    [14] 赵馨月, 卢德宏, 郭红星, 等. 球状结构钢基MMCs/钢三维互穿网络复合材料的制备[J]. 特种铸造及有色合金, 2016, 36(8):852-855.

    ZHAO X Y, LU D H, GUO H X, et al. Prepara tion of composites of MMCs and steel with three dimensional inter-penetrating network structure[J]. Special Casting & Nonferrous Alloys,2016,36(8):852-855(in Chinese).
    [15] MIKE A. Designing architectured materials[J]. Scripta Materialia,2013,68:4-7. doi: 10.1016/j.scriptamat.2012.04.033
    [16] XIE H, JIN Y X, NIU M Y, et al. Ef fect of multilayer graphene/nano-Fe2O3 composite additions on dry sliding wear behavior of titanium matrix composites[J]. Journal of Iron and Steel Research International,2020,27:1117-1126. doi: 10.1007/s42243-020-00460-7
    [17] HAN W, LI K, HU F, et al. Microstructure and mechanical properties of Mg-2.5 Si-xCe in-situ particle reinforced composites prepared by rapid solidification process[J]. Results in Physics,2019,15:102509. doi: 10.1016/j.rinp.2019.102509
    [18] 陈建华, 刘维良, 周华, 等. TiCp/W金属基复合材料的制备与性能研究[J]. 稀有金属与材料工程, 2017, 46(1): 242-246.

    CHEN J H, LIU W L, ZHOU H, et al. Study on Preparation and Properties of TiCp/W Metal Matrix Composite [J]. Rare Metal Materials and Engineering 2017, 46(1): 242-246(in Chinese).
    [19] NIU G, SUI Y D, ZENG H B, et al. Effect of centrifugal casting temperature on the microstructure and properties of ZTAP/HCCI matrix composites[J]. Materials Research Express,2021,8:26513. doi: 10.1088/2053-1591/abe012
    [20] 韦鸿铭. ZTAp/高铬铸铁基蜂窝构型复合材料热物理性质和力学性能研究[D]. 昆明理工大学.

    WEI H M. Study on Thermophysical Propertiesand Mechanical Properties of ZTAp/High Chromium Cast Iron Based Honeycomb Composites [D]. Kunming University of Science and Technology, 2019(in Chinese).
    [21] GONG W H, LU D H, HE G Y. Effect of volume fraction of metal matrix composites framework on compressive mechanical properties of 3D interpenetrating ZTAp/40Cr architectured composites [J]. Journal of Iron and Steel Research International, 2021.
    [22] BAI M M, LI W X, LI Y H, et al. Preparation and Properties of Hot-pressed Al2O3/Al-steel Mesh-Al Laminated Composites[J]. Journal of Inorganic Materials,2014,29(12):1339-1344. doi: 10.15541/jim20140410
    [23] LU D H, HE G Y, WANG L K, et al. Compressive properties and cracking behaviour of 3D interpenetrating hierarchical Al2O3p/steel composite[J]. Materials Science and Technology,2019,35(6):716-724. doi: 10.1080/02670836.2019.1590504
    [24] JIANG C Y, LU D H, MA W, et al. Mechanical behavior of ZTAp/40Cr three-dimensional interpenetrated composites under compression[J]. Materials Today Communications,2021,28:102623. doi: 10.1016/j.mtcomm.2021.102623
    [25] MA W, LU D H, TANG L, et al. Effect of matrix hardness on the impact abrasive wear performance of ZTAp/steel architecture composite[J]. Materials Research Express,2021,8:265.
  • 加载中
计量
  • 文章访问数:  149
  • HTML全文浏览量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 录用日期:  2021-12-20
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-01-11

目录

    /

    返回文章
    返回