留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能

赵梓帆 熊娟 但智钢

赵梓帆, 熊娟, 但智钢. Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能[J]. 复合材料学报, 2023, 40(4): 2176-2186. doi: 10.13801/j.cnki.fhclxb.20220525.003
引用本文: 赵梓帆, 熊娟, 但智钢. Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能[J]. 复合材料学报, 2023, 40(4): 2176-2186. doi: 10.13801/j.cnki.fhclxb.20220525.003
ZHAO Zifan, XIONG Juan, DAN Zhigang. Ag nanoparticles modified (K0.5Na0.5)NbO3/PVDF flexible energy harvester and its performance[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2176-2186. doi: 10.13801/j.cnki.fhclxb.20220525.003
Citation: ZHAO Zifan, XIONG Juan, DAN Zhigang. Ag nanoparticles modified (K0.5Na0.5)NbO3/PVDF flexible energy harvester and its performance[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2176-2186. doi: 10.13801/j.cnki.fhclxb.20220525.003

Ag纳米颗粒修饰(K0.5Na0.5)NbO3/PVDF柔性压电能量收集器及其性能

doi: 10.13801/j.cnki.fhclxb.20220525.003
基金项目: 国家重点研发计划项目(2019 YFC1904201)
详细信息
    通讯作者:

    但智钢,博士,研究员,博士生导师,研究方向为工业固废处理与资源化 E-mail: dash_2001@163.com

  • 中图分类号: TB34

Ag nanoparticles modified (K0.5Na0.5)NbO3/PVDF flexible energy harvester and its performance

Funds: National Key Research and Development Program of China (2019 YFC1904201)
  • 摘要: 将机械能转换为电能的压电能量收集器可为便携式可穿戴电子器件提供持续、独立的供电方案,促进柔性电子技术向智能化、集成化、多功能化方向发展。本文采用光还原法制备了Ag纳米颗粒修饰的铌酸钾钠(KNN)颗粒并将其与聚偏氟乙烯(PVDF)复合,得到Ag-KNN/PVDF压电复合薄膜。采用热压法在两层PVDF中复合Ag-KNN/PVDF薄膜,得到三明治结构的柔性复合压电薄膜(PAKP)及压电柔性能量收集器。研究结果表明:当Ag摩尔分数为1%时,PAKP柔性复合薄膜的极性β相最大,且压电输出性能最佳,输出电压可达6.39 V,是无Ag修饰样品的1.43倍,器件的最大瞬时功率为150.5 nW。经过3000次循环测试后,器件的电压输出幅度无明显变化。将其固定于自行车车架上,收集自行车行进中的机械能可使220 nF电容在200 s内充电至1.2 V,表明其在低功耗电子器件自供电领域具有良好的应用前景。

     

  • 图  1  三明治结构的柔性复合压电薄膜(PAKP)的制作工艺流程

    Figure  1.  Manufacturing process of flexible piezoelectric energy harvester based on flexible composite piezoelectric films with sandwich structure (PAKP) composite film

    PVDF—Polyvinylidene fluoride; KNN—Potassium sodium niobate; PET—Polyethylene terephthalate; DMF—N,N-dimethylformamide

    图  2  (a) 水热法制备铌酸钾钠(KNN)的SEM图像;(b) 球磨KNN的SEM图像;(c) Ag含量为摩尔分数1%的Ag-KNN颗粒的低倍TEM图像; (d) 高倍TEM图像(插图为相应区域的高分辨TEM图像)

    Figure  2.  SEM images potassium sodium niobate (KNN) samples of prepared by hydrothermal method (a) and after ball milling (b); TEM images of Ag-KNN particles with 1% mole fraction Ag in low magnification (c) and high magnification (d) (The insert is the high-resolution TEM images)

    图  3  (a) Ag含量为1%摩尔分数的Ag-KNN样品XPS全谱图;(b) 不同Ag含量Ag-KNN样品Ag3d高分辨XPS图谱

    Figure  3.  (a) Overall XPS spectrum of 1% mole fraction content Ag-KNN; (b) High-resolution XPS spectra of Ag-KNN samples with different Ag amount

    A—Auger

    图  4  不同Ag含量的PAKP薄膜表面SEM图像:(a) 0-PAKP;(b) 0.5-PAKP;(c) 1-PAKP;(d) 2-PAKP;(e) 3-PAKP;(f) 1-PAKP薄膜截面SEM图像

    Figure  4.  SEM images of Ag-KNN/PVDF film with different Ag amount: (a) 0-PAKP; (b) 0.5-PAKP; (c) 1-PAKP; (d) 2-PAKP; (e) 3-PAKP; (f) Cross sectional SEM image of 1-PAKP

    图  5  不同Ag含量PAKP复合薄膜极化后的XRD图谱 (a)、FTIR图谱 (b)、β相含量变化曲线 (c)

    Figure  5.  XRD patterns (a), FTIR spectra (b), variation of β phase content (c) of PAKP composite films with different Ag amount

    图  6  外加200 kV/cm电场时薄膜内部的电场分布仿真图:(a) KNN-PVDF复合薄膜;(b) Ag-KNN-PVDF复合薄膜

    Figure  6.  Simulation diagrams of electric field distribution in the film when 200 kV/cm electric field is applied: (a) KNN-PVDF film; (b) Ag-KNN-PVDF film

    图  7  不同Ag含量的PAKP复合薄膜的漏电流测试 ((a) 0-PAKP;(b) 0.5-PAKP;(c) 1-PAKP;(d) 2-PAKP;(e) 3-PAKP);320 kV/cm、1 Hz条件下电滞回线图 (f)

    Figure  7.  Leakage current test of PAKP film with different Ag amount ((a) 0-PAKP; (b) 0.5-PAKP; (c) 1-PAKP; (d) 2-PAKP; (e) 3-PAKP); Ferroelectric hysteresis loops (P-E) with 320 kV/cm, 1 Hz (f)

    图  8  纯PVDF及不同Ag含量PAKP复合薄膜:(a) 压电常数d33;(b) 杨氏模量;(c) 介电常数

    Figure  8.  Pure PVDF and PAKP films with different Ag nanoparticles amount: (a) Piezoelectric constant d33; (b) Young's modulus; (c) Dielectric constant

    图  9  不同结构PAKP复合压电能量收集器(PEH):(a) 开路电压;(b) 短路电流;(c) 1-PAKP复合压电能量收集器在加速度为1g~5g作用时的电压输出;(d) 1-PAKP压电能量收集器在正反接测试时的电压输出

    Figure  9.  PAKP piezoelectric energy harvester (PEH) with different structures: (a) Open-circuit voltage; (b) Short-circuit current; (c) Voltage output of 1-PAKP PEH by 1g-5g acceleration; (d) Voltage output of 1-PAKP PEH in forward and backward connection mode

    g—Acceleration of gravity

    图  10  1-PAKP复合压电能量收集器的输出电压和电流随负载的变化关系 (a)、功率随负载的变化关系 (b)、在 3 000 次循环下的可靠性测试 (c)

    Figure  10.  Output voltage and current evolution (a), instantaneous output powers versus external load resistors (b), and reliability test with 3000 cycles (c) of the PEH based on 1-PAKP composite film

    图  11  (a) 1-PAKP压电能量收集器安装于单车的实物照片;(b) 自然状态照片;(c) 磁铁斥力作用下弯曲状态照片;(d) 220 nF瓷片电容在单车运动过程中电容两端电压随时间变化关系图;(e) 单车在运动过程中压电能量收集器的电压随时间变化图谱

    Figure  11.  (a) Photos of 1-PAKP PEH fixed on the bicycle; (b) Photos of natural state; (c) Photos of bending state by magnet repulsion; (d) Voltage-time relation of 220 nF ceramic chip capacitor while the bicycle is moving; (e) Voltage-time relation of PEH while the bicycle is moving

    表  1  样品制备条件

    Table  1.   List of specimens with different films and Ag amount

    Sample Structure Ag mole
    fraction/%
    S-AKP Ag-KNN/PVDF (monolayer) 1
    0-PAKP PVDF/S-AKP/PVDF (three layers) 0
    0.5-PAKP PVDF/S-AKP/PVDF (three layers) 0.5
    1-PAKP PVDF/S-AKP/PVDF (three layers) 1
    2-PAKP PVDF/S-AKP/PVDF (three layers) 2
    3-PAKP PVDF/S-AKP/PVDF (three layers) 3
    下载: 导出CSV
  • [1] HE L R, LU J, HAN C, et al. Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized β-PVDF arrays for advanced piezoelec-tric sensing[J]. Small,2022,18(15):2200114.
    [2] YU S R, ZHANG Y K, YU Z H, et al. PANI/PVDF-TrFE porous aerogel bulk piezoelectric and triboelectric hybrid nanogenerator based on in-situ doping and liquid nitrogen quenching[J]. Nano Energy,2021,80:105519. doi: 10.1016/j.nanoen.2020.105519
    [3] CHEN P, WU P, WANG Q, et al. Ultrasound-driven electrical stimulation of peripheral nerves based on implantable piezoelectric thin film nanogenerators[J]. Nano Energy,2021,86:106123. doi: 10.1016/j.nanoen.2021.106123
    [4] JIAN G, JIAO Y, MENF Q Z, et al. 3D BaTiO3 flower based polymer composites exhibiting excellent piezoelectric energy harvesting properties[J]. Advanced Materials Interfaces,2020,7(16):2000484. doi: 10.1002/admi.202000484
    [5] WANG X X, SONG W Z, YOU M H, et al. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator[J]. ACS Nano,2018,12(8):8588-8596. doi: 10.1021/acsnano.8b04244
    [6] YANG L, ZHAO Q Y, CHEN K N, et al. PVDF-based composition-gradient multilayered nanocomposites for flexible high-performance piezoelectric nanogenerators[J]. ACS Applied Materials Interfaces,2020,12(9):11045-11054. doi: 10.1021/acsami.9b23480
    [7] SHI K M, SUN B, HUANG X Y, et al. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators[J]. Nano Energy,2018,52:153-162. doi: 10.1016/j.nanoen.2018.07.053
    [8] ZHANG C, FAN Y J, LI H Y, et al. Fully rollable lead-free poly(vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes[J]. ACS Nano,2018,12(5):4803-4811.
    [9] BAIRAGI S, ALI W. Poly(vinylidine fluoride) (PVDF)/potassium sodium niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator[J]. Organic Electrons,2020,78:105547. doi: 10.1016/j.orgel.2019.105547
    [10] LV X, WU J G, ZHANG X X. A new concept to enhance piezoelectricity and temperature stability in KNN ceramics[J]. Chemical Engineering Journal,2020,402:126215. doi: 10.1016/j.cej.2020.126215
    [11] BAIRAGI S, ALI W. A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorods based nanocomposite fiber[J]. European Polymer Journal,2019,116:554-561. doi: 10.1016/j.eurpolymj.2019.04.043
    [12] SINGH H, SINGH S, KHARE N. Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal[J]. Composites Science and Technology,2017,149:127-133. doi: 10.1016/j.compscitech.2017.06.013
    [13] ZHANG D Z, DONG Q M, WANG Y, et al. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator[J]. Sensors and Actuators B: Chemical,2021,339:129923. doi: 10.1016/j.snb.2021.129923
    [14] WANG D Y, ZHANG D Z, LI P. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator[J]. Nano-Micro Letters,2021,13:57. doi: 10.1007/s40820-020-00580-5
    [15] ZHAO C X, NIU J, ZHANG Y Y, et al. Coaxi-ally aligned MWCNTs improve performance of electrospun P(VDF-TrFE)-based fibrous mem-brane applied in wearable piezoelectric nano-generator[J]. Composites Part B, 2019, 178: 107447.
    [16] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
    [17] TIAN G, DENG W L, XIONG D, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table ten-nis training[J]. Nano Energy, 2019, 59: 574-581.
    [18] HE W D, GUO Y H, ZHAO Y B, et al. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane[J]. Chemical Engineering Journal,2021,423:130247. doi: 10.1016/j.cej.2021.130247
    [19] ZHOU Z, ZHANG Z, ZHANG Q L, et al. Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: A cost-effective approach to high-performance piezoe-lectric nanogenerators[J]. ACS Applied Materials Interfaces, 2020, 12(1): 1567-1576.
    [20] FU J, HOU Y D, ZHENG M P, et al. Flexible piezoelectric energy harvester with extremely high power generation capability by sandwich structure design strategy[J]. ACS Applied Materials Interfaces,2020,12(8):9766-9774. doi: 10.1021/acsami.9b21201
    [21] YANG H J, LU Z L, LI L H, et al. Novel BaTiO3-based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance[J]. ACS Applied Materials Interfaces,2020,12(39):43942-43949. doi: 10.1021/acsami.0c13057
    [22] PAL A, SASMAL A, MANOJ B, et al. Enhancement in energy storage and piezoelectric performance of three phase (PZT/MWCNT/PVDF) composite[J]. Materials Chemistry and Physics,2020,244:122639. doi: 10.1016/j.matchemphys.2020.122639
    [23] LI X X, JI D X, YU B X, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors[J]. Chemical Engineering Journal,2021,426:130345. doi: 10.1016/j.cej.2021.130345
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  336
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-05-10
  • 录用日期:  2022-05-19
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回