留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无机纳米材料填充混合基质反渗透膜的研究进展

葛梦妮 贾卓慧 王笑影 应国兵 武少禹 杨彦 张建峰

葛梦妮, 贾卓慧, 王笑影, 等. 无机纳米材料填充混合基质反渗透膜的研究进展[J]. 复合材料学报, 2022, 39(4): 1411-1424. doi: 10.13801/j.cnki.fhclxb.20211022.001
引用本文: 葛梦妮, 贾卓慧, 王笑影, 等. 无机纳米材料填充混合基质反渗透膜的研究进展[J]. 复合材料学报, 2022, 39(4): 1411-1424. doi: 10.13801/j.cnki.fhclxb.20211022.001
GE Mengni, JIA Zhuohui, WANG Xiaoying, et al. Research progress of mixed matrix reverse osmosis membrane filled with inorganic nanomaterials[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1411-1424. doi: 10.13801/j.cnki.fhclxb.20211022.001
Citation: GE Mengni, JIA Zhuohui, WANG Xiaoying, et al. Research progress of mixed matrix reverse osmosis membrane filled with inorganic nanomaterials[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1411-1424. doi: 10.13801/j.cnki.fhclxb.20211022.001

无机纳米材料填充混合基质反渗透膜的研究进展

doi: 10.13801/j.cnki.fhclxb.20211022.001
基金项目: 国家重点研发计划(2018YFC1508704);江苏省重点研发计划(BE2020024)
详细信息
    通讯作者:

    张建峰,博士,教授,博士生导师,研究方向为水环境净化材料 E-mail:jfzhang_sic@163.com

  • 中图分类号: TB332;TQ051.8

Research progress of mixed matrix reverse osmosis membrane filled with inorganic nanomaterials

  • 摘要: 反渗透是一种以渗透压为推动力,从溶液中分离出溶剂的操作,以能耗低、成本低和环境友好等优势成为了脱盐领域的主流技术,主导着全球海水/苦咸水淡化市场。作为反渗透的核心,反渗透膜仍然存在着水通量、截盐率难以满足日益提升的需求和耐久性不足的问题。以无机纳米材料为基础的混合基质反渗透膜的发展为解决这一难题注入了新的活力,已有较多研究报道。本文综述了现阶段无机纳米填充混合基质反渗透膜的研究进展,重点围绕零维、一维、二维无机纳米、多维纳米复合填充混合基质反渗透膜研究现状与进展、问题与挑战展开讨论。最后,对无机纳米材料填充混合基质反渗透膜的未来研究方向进行了分析与展望。

     

  • 图  1  纳米Ag填充混合基质膜实现高效水传输示意图[33]

    Figure  1.  Schematic illustration of nano-Ag filled mixed matrix membrane to achieve high-efficiency water transmission[33]

    图  2  氮掺杂氧化石墨烯量子点(N-GOQD)及其填充混合基质膜结构示意图:(a) 少层N-GOQDs;(b) N-GOQDs填充混合基质聚酰胺膜[43]

    Figure  2.  Schematic illustration of the structure of N-doped graphene oxide quantum dots (N-GOQD) and its filled mixed matrix membrane: (a) Few-layers N-GOQD; (b) N-GOQDs filled mixed matrix polyamide membrane[43]

    图  3  碳量子点(CQDs)耐氯机制示意:(a) 氯化机制;(b)耐氯:氢键增强;(c) 耐氯:牺牲官能团优先反应;(d) 耐氯:电荷排斥

    Figure  3.  Schematic illustration of the chlorine resistance mechanism of carbon quantum dots (CQDs): (a) Chlorination mechanism; (b) Chlorine resistance: Hydrogen bond enhancement; (c) Chlorine resistance: Sacrificial functional groups react preferentially; (d) Chlorine resistance: Charge repulsion

    图  4  碳纳米管(CNTs)及其混合基质膜结构图:(a) CNTs中水分子分布正视图;(b)封闭在单场结构中的水分子侧视图;(c) CNTs的功能化;(d) CNTs填充混合基质膜;(e) CNTs混合基质膜截TEM图像[53, 57-59]

    Figure  4.  Structure of carbon nanotubes (CNTs) and CNTs mixed matrix membranes: (a) Front view of water molecule distribution in CNTs; (b) Side view of water molecules confined in a single-filed configuration; (c) Functionalization of CNTs; (d) Mixed matrix CNTs membrane; (e) Cross-section TEM images of mixed matrix CNTs membrane[53, 57-59]

    图  5  氧化石墨烯(GO)嵌入反渗透膜聚酰胺层的途径示意图[68]

    Figure  5.  Schematic illustration for the pathways of incorporation of graphene oxide (GO) into the polyamide layer of reverse osmosis membranes[68]

    图  6  Ti3C2Tx与间苯二胺末端胺基和羟基的相互作用[77]

    Figure  6.  Interactions of Ti3C2Tx with terminal amines and carboxyl groups of m-phenylenediamine[77]

    图  7  石墨相氮化碳(g-C3N4)混合基质反渗透膜的界面聚合过程示意图[84]

    Figure  7.  Schematic illustration of interfacial polymerization process of graphite phase carbon nitride (g-C3N4) mixed matrix reverse osmosis membrane[84]

    图  8  聚酰胺膜 ((a)、(b)) 和0.01wt%MoS2填充混合基质膜 ((c)、(d)) 的横切面TEM图像[88]

    Figure  8.  TEM images for the cross-section of polyamide membrane ((a), (b)) and 0.01wt%MoS2 filled mixed matrix membrane ((c), (d))[88]

    表  1  不同氧化物纳米填充混合基质聚酰胺反渗透膜性能对比

    Table  1.   Performance comparison of different oxide nanoparticles filled mixed matrix polyamide reverse osmosis membranes

    Oxide typeParticle size/nmMembrane performanceReference
    TiO210Antifouling, good stability[17]
    ZnO25Enhancement of water flux[30]
    CuO~50Biological antifouling[25]
    SiO2164Enhancement of water flux[27]
    CeO250Enhancement of water flux, antifouling[29]
    下载: 导出CSV

    表  2  不同维度无机纳米填充混合基质聚酰胺反渗透膜的性能对比

    Table  2.   Performance comparison of inorganic nanomaterials filled mixed matrix polyamide reverse osmosis membranes with different dimensions

    DimensionMaterialPressure/MPaDosage/wt%Water permeability/(L·m−2·h−1·MPa−1)Improvement/%NaCl rejection/%Reference



    Zero-dimensional
    TiO21.520.01250.16013.597.7[17]
    Al-ZnO1.550.50.20623.498[30]
    CuO2.071.00.21880.297.4[25]
    SiO21.600.10.331178.296.0[27]
    CeO21.600.010.27550.098[29]
    CDs1.550.020.57224.199.0[96]
    N-GOQD1.500.020.16680.493[43]

    One-dimensional
    CNTs1.550.0010.28418.395.4[97]
    TNTs1.500.050.24592.996.53[64]
    HNTs1.500.050.24189.895.6[63]


    Two-dimensional
    GO1.550.00380.10781.499.4[69]
    Ti3C2Tx1.600.0150.25353.298.5[77]
    g-C3N41.600.010.13830.299.23[84]
    MoS21.550.010.62022.398.6[88]
    BN1.550.020.4025.496.4[94]
    Note: Feed solution is 2000 mg·L−1 NaCl solution.
    下载: 导出CSV
  • [1] PAN S Y, HADDAD A Z, KUMAR A, et al. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus[J]. Water Research,2020,183:116064. doi: 10.1016/j.watres.2020.116064
    [2] TESSEMA A A, WU C M, MOTORA K G, et al. Highly-efficient and salt-resistant CsxWO3 @g-C3N4/PVDF fiber membranes for interfacial water evaporation, desalination, and sewage treatment[J]. Composites Science and Technology,2021,211:108865. doi: 10.1016/j.compscitech.2021.108865
    [3] CULP T E, KHARA B, BRICKEY K P, et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes[J]. Science,2021,371(6524):72-75. doi: 10.1126/science.abb8518
    [4] SALEEM H, ZAIDI S J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review[J]. Desalination, 2020, 475: 114171.
    [5] 邴绍所, 周勇, 高从堦. 耐氧化芳香聚酰胺反渗透膜的研究进展[J]. 膜科学与技术, 2016, 36(2):115-121.

    BING S S, ZHOU Y, GAO C J. Progress of chlorine-resistant reverse osmosis membrane[J]. Membrane Science and Technology,2016,36(2):115-121(in Chinese).
    [6] XU G, XU J, SU H, et al. Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions[J]. Desalination,2019,451:18-34. doi: 10.1016/j.desal.2017.09.024
    [7] JEONG B H, HOEK E M, YAN Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J]. Journal of Membrane Science,2007,294(1-2):1-7. doi: 10.1016/j.memsci.2007.02.025
    [8] 赵海洋. 碳基纳米材料填充混合基质反渗透膜的制备及构效关系研究 [D]. 杭州: 浙江大学, 2015.

    ZHAO H Y. Study on the preparation and structure-function relationship of mixed-matrix reverse osmosis membrane incorporated with carbon nanomaterials [D]. Hangzhou: Zhejiang University, 2015(in Chinese).
    [9] ALVAREZ P J, CHAN C K, ELIMELECH M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology,2018,13(8):634-641. doi: 10.1038/s41565-018-0203-2
    [10] 徐国荣, 王生辉, 赵河立, 等. 海水淡化聚酰胺复合反渗透膜的发展趋势与展望[J]. 膜科学与技术, 2015, 35(5):122-126.

    XU G R, WANG S H, ZHAO H L, et al. The development trend and expectation of the polyamide-based reverse osmosis desalination membranes[J]. Membrane Science and Technology,2015,35(5):122-126(in Chinese).
    [11] LAU W, GRAY S, MATSUURA T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches[J]. Water Research,2015,80:306-324. doi: 10.1016/j.watres.2015.04.037
    [12] ALAM I, GUINEY L M, HERSAM M C, et al. Pressure-driven water transport behavior and antifouling performance of two-dimensional nanomaterial laminated membranes[J]. Journal of Membrane Science,2020,599:117812. doi: 10.1016/j.memsci.2019.117812
    [13] ZHANG G, ZHANG X, MENG Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chemical Engineering Journal,2020,392:123684. doi: 10.1016/j.cej.2019.123684
    [14] HU W, HUANG J, ZHANG X, et al. A mechanically robust and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation[J]. Applied Surface Science,2020,507:145168. doi: 10.1016/j.apsusc.2019.145168
    [15] ZARSHENAS K, JIANG G, ZHANG J, et al. Atomic scale manipulation of sublayer with functional TiO2 nanofilm toward high-performance reverse osmosis membrane[J]. Desalination,2020,480:114342. doi: 10.1016/j.desal.2020.114342
    [16] ASADOLLAHI M, BASTANI D, MOUSAVI S A, et al. Improvement of performance and fouling resistance of polyamide reverse osmosis membranes using acrylamide and TiO2 nanoparticles under UV irradiation for water desalination[J]. Journal of Applied Polymer Science,2020,137(11):48461. doi: 10.1002/app.48461
    [17] KHORSHIDI B, BISWAS I, GHOSH T, et al. Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity[J]. Scientific Reports,2018,8(1):784.
    [18] DONG G Q, LIU B X, SUN G H, et al. TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator[J]. Journal of Membrane Science,2019,577:249-257. doi: 10.1016/j.memsci.2019.02.003
    [19] HU W, CHEN S, ZHOU B, et al. Facile synthesis of ZnO nanoparticles based on bacterial cellulose[J]. Materials Science and Engineering: B,2010,170(1-3):88-92. doi: 10.1016/j.mseb.2010.02.034
    [20] BALTA S, SOTTO A, LUIS P, et al. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO[J]. Journal of Membrane Science,2012,389:155-161. doi: 10.1016/j.memsci.2011.10.025
    [21] AL-HOBAIB A, EL G J, El M L. Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles[J]. Membrane Water Treatment, 2015, 6(4): 309-321.
    [22] FRANKLIN N M, ROGERS N J, APTE S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility[J]. Environmental Science & Technology,2007,41(24):8484-8490.
    [23] REN G, HU D, CHENG E W, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications[J]. International Journal of Antimicrobial Agents,2009,33(6):587-590. doi: 10.1016/j.ijantimicag.2008.12.004
    [24] VASANTHARAJ S, SATHIYAVIMAL S, SARAVANAN M, et al. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential[J]. Journal of Photochemistry and Photobiology B: Biology,2019,191:143-149. doi: 10.1016/j.jphotobiol.2018.12.026
    [25] GARCÍA A, RODRÍGUEZ B, OZTÜRK D, et al. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties[J]. Polymer Bulletin,2018,75(5):2053-2069. doi: 10.1007/s00289-017-2146-4
    [26] PEYKI A, RAHIMPOUR A, JAHANSHAHI M. Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles[J]. Desalination, 2015, 368: 152-158.
    [27] BAO M, ZHU G, WANG L, et al. Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization[J]. Desalination,2013,309:261-266. doi: 10.1016/j.desal.2012.10.028
    [28] JADAV G L, SINGH P S. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties[J]. Journal of Membrane Science,2009,328(1-2):257-267.
    [29] WANG Y, GAO B, LI S, et al. Cerium oxide doped nanocomposite membranes for reverse osmosis desalination[J]. Chemosphere,2019,218:974-983. doi: 10.1016/j.chemosphere.2018.11.207
    [30] AL-HOBAIB A, EL G J, GHILOUFI I, et al. Synthesis and characterization of polyamide thin-film nanocomposite membrane reached by aluminum doped ZnO nanoparticles[J]. Materials Science in Semiconductor Processing,2016,42:111-114. doi: 10.1016/j.mssp.2015.07.058
    [31] PARK S H, KO Y S, PARK S J, et al. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties[J]. Journal of Membrane Science,2016,499:80-91. doi: 10.1016/j.memsci.2015.09.060
    [32] BEN S M, Lu X, BAR Z E, et al. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation[J]. Water Research,2014,62:260-270. doi: 10.1016/j.watres.2014.05.049
    [33] YANG Z, GUO H, YAO Z K, et al. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes[J]. Environmental Science & Technology,2019,53(9):5301-5308.
    [34] AKAR N, ASAR B, DIZGE N, et al. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles[J]. Journal of Membrane Science,2013,437:216-226. doi: 10.1016/j.memsci.2013.02.012
    [35] BEN S M, LU X, NEJATI S, et al. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles[J]. Desalination,2016,388:1-8. doi: 10.1016/j.desal.2016.03.005
    [36] LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews,2015,44(1):362-381.
    [37] HUI L, HUANG J, CHEN G, et al. Antibacterial property of graphene quantum dots (both source material and bacterial shape matter)[J]. ACS Applied Materials & Interfaces,2016,8(1):20-25.
    [38] XU X, RAY R, GU Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [39] WANG R, LU K Q, TANG Z R, et al. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis[J]. Journal of Materials Chemistry A,2017,5(8):3717-3734. doi: 10.1039/C6TA08660H
    [40] ZHAO D L, CHUNG T S. Applications of carbon quantum dots (CQDs) in membrane technologies: A review[J]. Water Research, 2018, 147: 43-49.
    [41] SHEN J, ZHU Y, YANG X, et al. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chemical Communications,2012,48(31):3686-3699.
    [42] SONG X, ZHOU Q, ZHANG T, et al. Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: Antifouling and chlorine resistance potentials[J]. Journal of Materials Chemistry A,2016,4(43):16896-16905. doi: 10.1039/C6TA06636D
    [43] FATHIZADEH M, TIEN H N, KHIVANTESV K, et al. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination[J]. Desalination,2019,451:125-132. doi: 10.1016/j.desal.2017.07.014
    [44] WANG F, ZHENG T, XIONG R, et al. CDs@ZIF-8 modified thin film polyamide nanocomposite membrane for simultaneous enhancement of chlorine-resistance and disinfection byproducts removal in drinking water[J]. ACS Applied Materials & Interfaces,2019,11(36):33033-33042.
    [45] YI Z, SHAO F, YU L, et al. Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water flux and NaCl rejection[J]. Desalination,2020,479:114341. doi: 10.1016/j.desal.2020.114341
    [46] JOGI B F, SAWANT M, KULKARNI M, et al. Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: A review[J]. Journal of Encapsulation and Adsorption Sciences,2012,2:25978.
    [47] 马云霞. 水分子在碳纳米管中扩散模拟研究 [D]. 太原: 中北大学, 2013.

    MA Y X. Molecular simulation study on difffusion of water in carbon nanotubes [D]. Taiyuan: North University of China, 2013(in Chinese).
    [48] LEE H D, KIM H W, CHO Y H, et al. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes[J]. Small,2014,10(13):2653-2660. doi: 10.1002/smll.201303945
    [49] LI Q, YANG D F, SHI J S, et al. Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane[J]. Desalination,2016,379:164-171. doi: 10.1016/j.desal.2015.11.008
    [50] ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
    [51] AMINI M, JAHANSHAHI M, RAHIMPOUR A. Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes[J]. Journal of Membrane Science, 2013, 435: 233-241.
    [52] CHOI W, KIM S H, CHUN B H, et al. Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes[J]. Desalination & Water Treatment,2010,15(1-3):198-204.
    [53] ZHAO H, QIU S, WU L, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. Journal of Membrane Science,2014,450:249-256. doi: 10.1016/j.memsci.2013.09.014
    [54] VATANPOUR V, SAFARPOUR M, KHATAEE A, et al. A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes[J]. Separation and Purification Technology,2017,184:135-143. doi: 10.1016/j.seppur.2017.04.038
    [55] ORTIZ-MEDINA J, INUKAI S, ARAKI T, et al. Robust water desalination membranes against degradation using high loads of carbon nanotubes[J]. Scientific Reports,2018,8(1):2748.
    [56] WANG J H, YANG D F, GAO X L, et al. Tip and inner walls modification of single-walled carbon nanotubes (3.5 nm diameter) and preparation of polyamide/modified CNT nanocomposite reverse osmosis membrane[J]. Journal of Experimental Nanoscience,2018,13(1):11-26. doi: 10.1080/17458080.2017.1405163
    [57] FALK K, SEDLMEIER F, JOLY L, et al. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction[J]. Nano Letters,2010,10(10):4067-4073. doi: 10.1021/nl1021046
    [58] DAS R, ALI M E, HAMID S B A, et al. Carbon nanotube membranes for water purification: A bright future in water desalination[J]. Desalination,2014,336:97-109. doi: 10.1016/j.desal.2013.12.026
    [59] ALI S, REHMAN S A U, LUAN H Y, et al. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination[J]. Science of the Total Environment,2019,646:1126-1139. doi: 10.1016/j.scitotenv.2018.07.348
    [60] FARHAD A, SOMAYE A, DU B, et al. Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes[J]. Journal of Membrane Science,2018,563:470-480. doi: 10.1016/j.memsci.2018.05.070
    [61] CHEHRAZI E, SHARIF A, KARIMI M, Rational design of halloysite surface chemistry for high performance nano-tube-thin film nanocomposite gas separation membranes[J]. ACS Applied Materials & Interfaces, 2020, 12 (33): 37527-37537.
    [62] REZAEI-DASHTARZHANDI M, SARRAFZADEH M H, GOH P S, et al. Development of novel thin film nanocomposite forward osmosis membranes containing halloysite/graphitic carbon nitride nanoparticles towards enhanced desalination performance[J]. Desalination,2018,447:18-28. doi: 10.1016/j.desal.2018.08.003
    [63] GHANBARI M, EMADZADEH D, LAU W J, et al. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination[J]. Desalination,2015,358:33-41. doi: 10.1016/j.desal.2014.11.035
    [64] EMADZADEH D, LAU W J, RAHBARI-SISAKHT M, et al. A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination[J]. Desalination,2015,368:106-113. doi: 10.1016/j.desal.2014.11.019
    [65] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068
    [66] JOSHI R, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide: The new membrane material[J]. Applied Materials Today,2015,1(1):1-12. doi: 10.1016/j.apmt.2015.06.002
    [67] YIN J, DENG B. Polymer-matrix nanocomposite membranes for water treatment[J]. Journal of Membrane Science, 2015, 479: 256-275.
    [68] LIU Q, XU G R. Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes[J]. Desalination, 2016, 394: 162-175.
    [69] CHAE H, LEE J, LEE C, et al. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J]. Journal of Membrane Science,2015,483:128-135. doi: 10.1016/j.memsci.2015.02.045
    [70] ALI M E, WANG L, WANG X, et al. Thin film composite membranes embedded with graphene oxide for water desalination[J]. Desalination,2016,386:67-76. doi: 10.1016/j.desal.2016.02.034
    [71] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [72] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. doi: 10.1126/science.1241488
    [73] PENG J, CHEN X, ONG W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro-and photocatalysis[J]. Chem,2019,5(1):18-50. doi: 10.1016/j.chempr.2018.08.037
    [74] XIE X, CHEN C, ZHANG N, et al. Microstructure and surface control of MXene films for water purification[J]. Nature Sustainability,2019,2(9):856-862. doi: 10.1038/s41893-019-0373-4
    [75] LIU T, LIU X, GRAHAM N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. Journal of Membrane Science,2020,593:117431. doi: 10.1016/j.memsci.2019.117431
    [76] GHIDIU M, HALIM J, KOTA S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene[J]. Chemistry of Materials,2016,28(10):3507-3514. doi: 10.1021/acs.chemmater.6b01275
    [77] WANG X, LI Q, ZHANG J, et al. Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination[J]. Journal of Membrane Science,2020,603:118036.
    [78] CHEN S, GUO Y, YUAN D, et al. Constructing porous channels in superhydrophilic polyethersulfone composite nano-fibrous membranes for sustainably enhanced photocatalytic activities in wastewater remediation[J]. Composites Science and Technology,2021,214:108993. doi: 10.1016/j.compscitech.2021.108993
    [79] QIN L, HUANG D, XU P, et al. In-situ deposition of gold nanoparticles onto polydopamine-decorated g-C3N4 for highly efficient reduction of nitroaromatics in environmental water purification[J]. Journal of Colloid and Interface Science,2019,534:357-369. doi: 10.1016/j.jcis.2018.09.051
    [80] CAO K, JIANG Z, ZHANG X, et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix[J]. Journal of Membrane Science,2015,490:72-83. doi: 10.1016/j.memsci.2015.04.050
    [81] VELLAICHAMY B, PERIAKARUPPAN P. Catalytic hydrogenation performance of an in situ assembled Au@gC3N4-PANI nanoblend: synergistic inter-constituent interactions boost the catalysis[J]. New Journal of Chemistry, 2017, 41 (15): 7123-7132.
    [82] GAO X, LI Y, YANG X, et al. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers[J]. Journal of Materials Chemistry A,2017,5(37):19875-19883. doi: 10.1039/C7TA06348B
    [83] XU C, SHAO F, YI Z, et al. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method[J]. Separation and Purification Technology,2019,223:178-185. doi: 10.1016/j.seppur.2019.04.073
    [84] GE M, WQNG X, WU S, et al. Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller[J]. Separation and Purification Technology,2021,258:117980. doi: 10.1016/j.seppur.2020.117980
    [85] FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature,2016,536(7615):197-200. doi: 10.1038/nature18593
    [86] ZHOU K G, MAO N N, WANG H X, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie,2011,123(46):11031-11034. doi: 10.1002/ange.201105364
    [87] HEIRANIAN M, FARIMANI A B, ALURU N R. Water desalination with a single-layer MoS2 nanopore[J]. Nature Communications, 2015, 6 (1): 1-6.
    [88] LI Y, YANG S, ZHANG K, et al. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics[J]. Desalination,2019,454:48-58. doi: 10.1016/j.desal.2018.12.016
    [89] DERVIN S, DIONYSIOU D D, PILLAI S C. 2D nanostructures for water purification: Graphene and beyond[J]. Nanoscale, 2016, 8 (33): 15115-15131.
    [90] LI J, HE S, LI R, et al. Template-free synthesis of three dimensional porous boron nitride nanosheets for efficient water cleaning[J]. RSC Advances,2018,8(57):32886-32892. doi: 10.1039/C8RA06445H
    [91] LOW Z X, JI J, BLUMENSTOCK D, et al. Fouling resistant 2D boron nitride nanosheet–PES nanofiltration membranes[J]. Journal of Membrane Science,2018,563:949-956. doi: 10.1016/j.memsci.2018.07.003
    [92] ABDIKHEIBARI S, LEI W, DUMÉE L F, et al. Novel thin film nanocomposite membranes decorated with few-layered boron nitride nanosheets for simultaneously enhanced water flux and organic fouling resistance[J]. Applied Surface Science,2019,488:565-577. doi: 10.1016/j.apsusc.2019.05.217
    [93] LIU D, HE L, LEI W, et al. Multifunctional polymer/porous boron nitride nanosheet membranes for superior trapping emulsified oils and organic molecules[J]. Advanced Materials Interfaces,2015,2(12):1500228. doi: 10.1002/admi.201500228
    [94] WANG R, LOW Z X, LIU S, et al. Thin-film composite polyamide membrane modified by embedding functionalized boron nitride nanosheets for reverse osmosis[J]. Journal of Membrane Science,2020,611:118389. doi: 10.1016/j.memsci.2020.118389
    [95] VASILEIOU A A, KONTOPOULOU M, DOCOSLIS A. A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites[J]. ACS Applied Materials & Interfaces, 2014, 6 (3): 1916-1925.
    [96] LI Y, LI S, ZHANG K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes[J]. Journal of Membrane Science, 2017, 537: 42-53.
    [97] KIM H J, CHOI K, BAEK Y, et al. High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions[J]. ACS Applied Materials & Interfaces,2014,6(4):2819-2829.
    [98] RAJAMUMARAN R, BODDU V, KUMAR M, et al. Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination[J]. Desalination,2019,467:245-256. doi: 10.1016/j.desal.2019.06.018
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  941
  • HTML全文浏览量:  480
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2021-09-27
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-10-22
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回