留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔隙率对碳纤维/尼龙6复合材料湿热性能影响的数值研究

雷永鹏 康振航 刘驻 宋权威 章继峰

雷永鹏, 康振航, 刘驻, 等. 孔隙率对碳纤维/尼龙6复合材料湿热性能影响的数值研究[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 雷永鹏, 康振航, 刘驻, 等. 孔隙率对碳纤维/尼龙6复合材料湿热性能影响的数值研究[J]. 复合材料学报, 2022, 40(0): 1-13
Yongpeng LEI, Zhenhang KANG, Zhu LIU, Quanwei SONG, Jifeng ZHANG. Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites[J]. Acta Materiae Compositae Sinica.
Citation: Yongpeng LEI, Zhenhang KANG, Zhu LIU, Quanwei SONG, Jifeng ZHANG. Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites[J]. Acta Materiae Compositae Sinica.

孔隙率对碳纤维/尼龙6复合材料湿热性能影响的数值研究

基金项目: 国家自然科学基金 (11772098;51672054)
详细信息
    通讯作者:

    章继峰,博士研究生,教授,硕士生/博士生导师,研究方向为船用复合材料 E-mail: jfzhang@hrbeu.edu.cn

  • 中图分类号: TB332

Numerical study on the effect of void content on hygrothermal performances of carbon fiber reinforced polyamide 6 composites

  • 摘要: 孔隙在复合材料制造过程中广泛存在,在湿热环境下孔隙的存在会改变应力场和水分场,进而影响复合材料的吸湿性能与力学老化性能。对碳纤维/尼龙6(carbon fiber reinforced polyamide 6, CF/PA6)复合材料在不同温度浸水环境下吸湿老化后的力学性能测试,研究了温度与吸湿量对其力学性能的影响,以及强度与模量等力学参数的演化规律,建立吸湿参数与力学参数的关联函数。基于随机顺序吸附法算法(Random Sequential Adsorption, RSA),建立了纤维、界面和孔隙随机分布的代表性体积单元(Representative Volume Element,RVE)模型。在本构模型中引入依赖于吸湿量的退化因子,研究了孔隙含量对复合材料横向拉伸、压缩、剪切强度和模量的影响,揭示了湿热老化前后不同的失效机理。结果表明,在热湿老化前,由于应力集中,孔隙会导致复合材料力学性能下降,孔隙率含量每增加1%,横向拉伸强度降低6.4%;湿热老化后,基体吸湿塑化效应是复合材料力学性能降低主要因素,对应降低率为3.86%。

     

  • 图  1  吸湿量与老化温度对尼龙6(PA6)基体拉伸力学性能影响

    Figure  1.  Effect of absorbed water content and temperature on the tensile properties of polyamide 6 (PA6)

    图  2  吸湿量与老化温度对碳纤维(CF)/PA6横向拉伸力学性能的影响

    Figure  2.  Effect of absorbed water content and temperature on the transverse tensile properties of carbon fiber (CF)/PA6

    图  3  吸湿量对PA6基体和CF/PA6复合材料拉伸强度与弹性模量的影响

    Figure  3.  Effect of water content on the tensile strength and elastic modulus of PA6 resin and CF/PA6 composites

    图  4  不同孔隙含量的CF/PA6复合材料代表性体积单元(RVE)模型

    Figure  4.  Representative volume element (RVE) models with different contents of voids for CF/PA6 composites

    图  5  CF/PA6复合材料代表性体积单元(RVE)模型在横向拉伸(a)、横向压缩(b)、横向剪切(c)荷载作用下的渐进失效

    Figure  5.  Failure progression in a representative volume element (RVE) model of CF/PA6 composites under the loading of tension (a), compression (b) and shearing (c)

    图  6  CF/PA6复合材料预测模型与数值模拟计算结果对比

    Figure  6.  Comparison of prediction models and numerical simulation results of CF/PA6 composites

    图  7  CF/PA6复合材料孔隙含量对吸湿性能的影响

    Figure  7.  Effect of voids content on the water absorption performance of CF/PA6 composites

    图  8  孔隙含量对CF/PA6未老化试样力学性能的影响:(a)强度;(b)弹性模量

    Figure  8.  Effect of voids content on the mechanical performance for unaged CF/PA6 samples: (a) Strength; (b) Elastic modulus

    图  9  孔隙含量对CF/PA6复合材料湿热老化模型力学性能的影响:(a)强度;(b)弹性模量

    Figure  9.  Effect of voids content on the mechanical performance for hygroscopic saturated CF/PA6 samples: (a) Strength; (b) Elastic modulus

    图  10  CF/PA6复合材料未老化模型在不同力学加载模式下的失效模式:(a)横向拉伸;(b)横向压缩;(c)横向剪切

    Figure  10.  Colored failure patterns of unaged CF/PA6 samples in the tension (a), compression (b) and shear simulation (c)

    图  11  CF/PA6复合材料湿热老化模型在不同力学加载模式下的失效模式:(a)横向拉伸;(b)横向压缩;(c)横向剪切

    Figure  11.  Colored failure patterns of hygroscopic saturated CF/PA6 samples in the (a), compression (b) and shear simulation (c)

    表  1  CF/PA6复合材料的各组份材料在50℃浸水环境的吸湿参数

    Table  1.   Water absorption parameters for component materials in the CF/PA6 composites immersed at 50℃ water bath

    ParameterMatrixCarbon fiberVoidsComposite
    Diffusivity /
    106mm2·s−1
    ${D_{\text{m}}}$${D_{\text{f}}}$${D_{\text{v}}}$${D_{{\text{eff}}}}$
    4.64046.42.16
    Water content /
    %
    ${M_{\text{m}}}$${M_{\text{f}}}$${M_{\text{v}}}$${M_{{\text{eff}}}}$
    9.4023.55.26
    下载: 导出CSV

    表  2  CF/PA6复合材料力学性能

    Table  2.   Mechanical properties for CF/PA6 composites

    Fiber$E_2^f/{\text{GPa}}$$\mu _{23}^f$$\alpha^{\mathrm{f}} /\left(10^{-6} {\text{℃}}^{-1}\right)$$ {\beta ^f} $${\rho ^f}/({\text{kg}} \cdot {{\text{m}}^{{\text{ - 3}}}})$
    16.540.25-0.8301810
    Matrix$ {E^m}/{\text{GPa}} $${\mu ^m}$${\sigma _{yt}}/{\text{MPa}}$$ {\sigma _{yc}}/{\text{MPa}} $$\alpha^{\mathrm{m}} /\left(10^{-6} {\text{℃}} ^{-1}\right)$
    2.190.3425504
    $ {\beta ^m} $${\rho ^m}/({\text{kg}} \cdot {{\text{m}}^{{{ - 3}}}})$
    0.11080
    Interface$ K_n^0/({\text{N}} \cdot {\text{m}}{{\text{m}}^{{{ - 3}}}}) $$K_s^0/({\text{N}} \cdot {\text{m}}{{\text{m}}^{{{ - 3}}}})$$K_t^0/({\text{N}} \cdot {\text{m}}{{\text{m}}^{{{ - 3}}}})$$t_n^0/{\text{MPa}}$$t_s^0/{\text{MPa}}$
    $3.13 \times {10^4}$$5.0 \times {10^4}$$5.0 \times {10^4}$17.1140.67
    $t_t^0/{\text{MPa}}$$G_n^c{\text{/(N}} \cdot {\text{m}}{{\text{m}}^{ - 1}}{\text{)}}$$G_s^c{\text{/(N}} \cdot {\text{m}}{{\text{m}}^{ - 1}}{\text{)}}$$G_t^c{\text{/(N}} \cdot {\text{m}}{{\text{m}}^{ - 1}}{\text{)}}$
    40.670.220.230.23
    Notes: $E_2^f$and $ {E^m} $ are the tensile modulus of the carbon fiber and the PA6 matrix; $\mu _{23}^f$ and ${\mu ^m}$ are the Poisson's ratio of the carbon fiber and the PA6 matrix; $ {\alpha ^f} $ and $ {\alpha ^m} $ are the coefficient of thermal expansion for the carbon fiber and the PA6 matrix; $ {\beta ^f} $ and $ {\beta ^m} $ are the coefficient of moisture expansion for the carbon fiber and the PA6 matrix; ${\rho ^f}$ and ${\rho ^m}$ are the density of the carbon fiber and the PA6 matrix; ${\sigma _{yt}}$ and $ {\sigma _{yc}} $are the tensile and compressive yield strength of the PA6 matrix; $ K_n^0 $, $K_s^0$ and $K_t^0$ are the interfacial stiffness; $t_{\text{n}}^{\text{0}}$, $t_{\text{s}}^{\text{0}}$ and $t_{\text{t}}^{\text{0}}$ are the interfacial strength; $G_{\text{n}}^{\text{c}}$, $G_{\text{s}}^{\text{c}}$ and $G_{\text{t}}^{\text{c}}$ are the fracture toughness.
    下载: 导出CSV

    表  3  含孔隙缺陷复合材料的相对扩散系数的预测模型[17]

    Table  3.   Several theoretical models for calculating effective diffusion coefficient of composites containing voids [17]

    ModelExpression
    Porous-matrix model$ \dfrac{{{D_{eff}}}}{{{D_m}}} = \left[ {1 + 2{\alpha _{mv}}{V_v}\dfrac{{\left( {{{{D_v}} \mathord{\left/ {\vphantom {{{D_v}} {{D_m}}}} \right. } {{D_m}}}} \right) - 1}}{{\left( {{{{D_v}} \mathord{\left/ {\vphantom {{{D_v}} {{D_m}}}} \right. } {{D_m}}}} \right) + 1}}} \right]\dfrac{{1 - {V_f}}}{{1 + {V_f}}} $
    with $ {\alpha _{mv}} = \dfrac{{{\rho _{water}}}}{{{M_m}{\rho _m}(1 - {v_{void}})}} $
    Four-phase model$ \dfrac{{{D_{eff}}}}{{{D_m}}} = \dfrac{{(1 - k{V_f})(1 + k) + \Phi (1 + k{V_f})(k - 1)}}{{(1 + k{V_f})(1 + k) + \Phi (1 - k{V_f})(k - 1)}} $
    $ k = {{({V_v} + {V_f})} \mathord{\left/ {\vphantom {{({V_v} + {V_f})} {{V_f}}}} \right. } {{V_f}}} $, $ \Phi = {\alpha _{mv}}({{{D_v}} \mathord{\left/ {\vphantom {{{D_v}} {{D_m}}}} \right. } {{D_m}}}) $
    Self-consistent model$ \dfrac{{{D_{eff}}}}{{{D_m}}} = \dfrac{1}{{2(1 + k)}}\left( {\lambda + \sqrt {4\dfrac{{{D_v}}}{{{D_m}}}({k^2} - 1) + {\lambda ^2}} } \right) $
    $ \lambda = \dfrac{{{D_v}}}{{{D_m}}}\left( {1 + k\left( {2{V_v} - 1} \right)} \right) + \left( {1 + k\left( {1 - 2{V_v}} \right)} \right) $
    Notes: $ {D_v} $, $ {D_m} $ and$ {D_{eff}} $ are the diffusivity of voids, matrix and composites; $ {V_f} $ is volume fraction of carbon fiber in CF/PA6 composites; $ {\alpha _{mv}} $, $ k $, $ \Phi $ and $ \lambda $ are the intermediate variable.
    下载: 导出CSV

    表  4  CF/PA6复合材料不同孔隙率代表性体积单元(RVE)模型的湿热老化前后的裂纹数量对比

    Table  4.   Comparison of the number of cracks in representative volume element (RVE) models of CF/PA6 composites with different porosities before and after hygrothermal aging

    Porosity /%UnagedAged
    TensionCompressionShearTensionCompressionShear
    14239105
    25221093
    31339156
    41227146
    522210145
    下载: 导出CSV
  • [1] GRUNENFELDER L K, NUTT S R. Void formation in composite prepregs – Effect of dissolved moisture[J]. Composites Science and Technology,2010,70(16):2304-2309. doi: 10.1016/j.compscitech.2010.09.009
    [2] MEHDIKHANI M, STRAUMIT I, GORBATIKH L, et al. Detailed characterization of voids in multidirectional carbon fiber/epoxy composite laminates using X-ray micro-computed tomography[J]. Composites Part A:Applied Science and Manufacturing,2019,125:105532. doi: 10.1016/j.compositesa.2019.105532
    [3] LUO L, ZHANG B, LEI Y, et al. Identification of voids and interlaminar shear strengths of polymer-matrix composites by optical microscopy experiment and deep learning methodology[J]. Polymers for Advanced Technologies,2021,32(4):1853-1865. doi: 10.1002/pat.5226
    [4] COSTA M L, DE ALMEIDA S F M, REZENDE M C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates[J]. Composites Science and Technology,2001,61(14):2101-2108. doi: 10.1016/S0266-3538(01)00157-9
    [5] LITTLE J E, YUAN X, JONES M I. Characterisation of voids in fibre reinforced composite materials[J]. NDT & E International,2012,46:122-127.
    [6] MANTA A, GRESIL M, SOUTIS C. Infrared thermography for void mapping of a graphene/epoxy composite and its full-field thermal simulation[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(7):1441-1453.
    [7] TRETIAK I, SMITH R A. A parametric study of segmentation thresholds for X-ray CT porosity characterisation in composite materials[J]. Composites Part A:Applied Science and Manufacturing,2019,123:10-24. doi: 10.1016/j.compositesa.2019.04.029
    [8] 李波, 万小朋, 赵美英. 孔隙率对复合材料单向板横向力学性能的影响[J]. 玻璃钢/复合材料, 2017, 000(6):33-38.

    LI Bo, WAN Xiaopeng, ZHAO Meiying. The influence of void contents on transverse mechanical properties of unidirectional composites[J]. Fiber Reinforced Plastics/Composites,2017,000(6):33-38(in Chinese).
    [9] 梁向雨, 林莉, 陈军, et al. 孔隙尺寸离散度大的碳纤维增强复合材料随机孔隙建模方法研究[J]. 航空材料学报, 2013, 33(03):81-85.

    LIANG Xiangyu, LIN Li, CHEN Jun, DING Shanshan, LI Ximeng. Random void modeling for carbon fibre reinforced composite with highly dispersed void size[J]. Journal of Aeronautical Materials,2013,33(03):81-85(in Chinese).
    [10] HUANG H, TALREJA R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites[J]. Composites Science and Technology,2005,65(13):1964-1981. doi: 10.1016/j.compscitech.2005.02.019
    [11] NIKOPOUR H. A virtual frame work for predication of effect of voids on transverse elasticity of a unidirectionally reinforced composite[J]. Computational Materials Science,2013,79:25-30. doi: 10.1016/j.commatsci.2013.05.049
    [12] ASHOURI VAJARI D, GONZáLEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97:46-54. doi: 10.1016/j.compscitech.2014.04.004
    [13] DONG C. Effects of Process-Induced Voids on the Properties of Fibre Reinforced Composites[J]. Journal of Materials Science & Technology,2016,32(7):597-604.
    [14] WANG M, ZHANG P, FEI Q, et al. Computational evaluation of the effects of void on the transverse tensile strengths of unidirectional composites considering thermal residual stress[J]. Composite Structures,2019,227:111287. doi: 10.1016/j.compstruct.2019.111287
    [15] MEHDIKHANI M, PETROV N A, STRAUMIT I, et al. The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales[J]. Composites Part A:Applied Science and Manufacturing,2019,117:180-192. doi: 10.1016/j.compositesa.2018.11.009
    [16] HYDE A, HE J, CUI X, et al. Effects of microvoids on strength of unidirectional fiber-reinforced composite materials[J]. Composites Part B:Engineering,2020,187:107844. doi: 10.1016/j.compositesb.2020.107844
    [17] GUERIBIZ D, RAHMANI M, JACQUEMIN F, et al. Homogenization of Moisture Diffusing Behavior of Composite Materials with Impermeable or Permeable Fibers — Application to Porous Composite Materials[J]. Journal of Composite Materials,2009,43(12):1391-1408. doi: 10.1177/0021998308104229
    [18] BOURENNANE H, GUERIBIZ D, FRéOUR S, et al. Modeling the effect of damage on diffusive behavior in a polymeric matrix composite material[J]. Journal of Reinforced Plastics and Composites,2019,38(15):717-733. doi: 10.1177/0731684419845479
    [19] LEI Y, ZHANG J, ZHANG T, et al. Water diffusion in carbon fiber reinforced polyamide 6 composites: Experimental, theoretical, and numerical approaches[J]. Journal of Reinforced Plastics and Composites,2019,38(12):578-587. doi: 10.1177/0731684419835034
    [20] SANG L, WANG C, WANG Y, et al. Effects of hydrothermal aging on moisture absorption and property prediction of short carbon fiber reinforced polyamide 6 composites[J]. Composites Part B:Engineering,2018,153:306-314. doi: 10.1016/j.compositesb.2018.08.138
    [21] SANG L, WANG Y, WANG C, et al. Moisture diffusion and damage characteristics of carbon fabric reinforced polyamide 6 laminates under hydrothermal aging[J]. Composites Part A:Applied Science and Manufacturing,2019,123:242-252. doi: 10.1016/j.compositesa.2019.05.023
    [22] 美国材料与试验协会. 聚合物基复合材料的吸湿性能和平衡条件的标准试验方法: ASTM D5229M−14[S]. 西康舍霍肯: 美国标准出版社, 2014 (in Chinese).

    American Society of Testing Materials. Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials: ASTM D5229M−14[S]. West Conshohocken: American Standards Press, 2014.
    [23] 美国材料与试验协会. 塑料拉伸性能的标准试验方法: ASTM D638−14 [S]. 西康舍霍肯: 美国标准出版社, 2014 (in Chinese).

    American Society of Testing Materials. Standard Test Method for Tensile Properties of Plastics1: ASTM D638−14 [S]. West Conshohocken: American Standards Press, 2014.
    [24] 美国材料与试验协会. 聚合物基复合材料拉伸性能的标准试验方法: ASTM D3039 −14 [S]. 西康舍霍肯: 美国标准出版社, 2014 (in Chinese).

    American Society of Testing Materials. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: ASTM D3039 −14 [S]. West Conshohocken: American Standards Press, 2014.
    [25] ALTENBACH H, BOLCHOUN A, KOLUPAEV V A. Phenomenological yield and failure criteria [M]. Plasticity of pressure-sensitive materials. Springer. 2014: 49-152.
    [26] BRüNIG M, CHYRA O, ALBRECHT D, et al. A ductile damage criterion at various stress triaxialities[J]. International Journal of Plasticity,2008,24(10):1731-1755. doi: 10.1016/j.ijplas.2007.12.001
    [27] PARı́S F, CORREA E, CAñAS J. Micromechanical view of failure of the matrix in fibrous composite materials[J]. Composites Science and Technology,2003,63(7):1041-1052. doi: 10.1016/S0266-3538(03)00017-4
    [28] GONZáLEZ C, LLORCA J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling[J]. Composites Science and Technology,2007,67(13):2795-2806. doi: 10.1016/j.compscitech.2007.02.001
    [29] JIA L, YU L, ZHANG K, et al. Combined modelling and experimental studies of failure in thick laminates under out-of-plane shear[J]. Composites Part B:Engineering,2016,105:8-22. doi: 10.1016/j.compositesb.2016.08.017
    [30] HUANG Z-M. Micromechanical Failure Analysis of Unidirectional Composites [M]. Failure Analysis. IntechOpen. 2018: 43.
    [31] AFFDL J C H, KARDOS J L. The Halpin-Tsai Equations: A Review[J]. Polymer Engineering and Science,1976,16(5):344-352. doi: 10.1002/pen.760160512
  • 加载中
计量
  • 文章访问数:  78
  • HTML全文浏览量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-03-07
  • 修回日期:  2022-02-18
  • 网络出版日期:  2022-03-28

目录

    /

    返回文章
    返回