留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强高模碳纤维表面电化学氮化机制

乔伟静 田艳红 张学军

乔伟静, 田艳红, 张学军. 高强高模碳纤维表面电化学氮化机制[J]. 复合材料学报, 2022, 40(0): 1-9
引用本文: 乔伟静, 田艳红, 张学军. 高强高模碳纤维表面电化学氮化机制[J]. 复合材料学报, 2022, 40(0): 1-9
Weijing QIAO, Yanhong TIAN, Xuejun ZHANG. Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification[J]. Acta Materiae Compositae Sinica.
Citation: Weijing QIAO, Yanhong TIAN, Xuejun ZHANG. Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification[J]. Acta Materiae Compositae Sinica.

高强高模碳纤维表面电化学氮化机制

详细信息
    通讯作者:

    田艳红,博士,副研究员,硕士生导师,研究方向为碳纤维制备及应用性能 E-mail:tianyh@mail.buct.edu.cn

  • 中图分类号: TB332

Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification

  • 摘要: 高温石墨化使高强高模碳纤维(CF)表面光滑,反应活性低,导致其复合材料界面粘接性能差。杂原子改性是改善CF表面反应活性的有效手段之一。采用循环伏安(CV)方法在有机复合电解液中对高强高模CF进行了表面氧化和氮化改性,采用CV优选的复合电解液进行恒流电化学氧化处理,研究了CV扫描次数和电解液中含氮有机物对CF表面化学组成的影响。电化学处理前后CF表面化学元素组成和微观形态变化通过X-光电子能谱(XPS)、扫描电子显微镜(SEM)及拉曼光谱表征。基于实验数据探讨了CF表面含氮官能团的生成及转变机制。研究结果显示,有机溶剂、有机氮源和含硫铵盐的协同作用使CF表面N含量从0.28at% to 4.77at%。适量的水存在,可以使CF表面O含量显著提高。CF表面的含氧官能团可以与CO(NH2)2中的—NH2及电解液中的NH4+反应形成酰胺基团,随着反应时间延长,CF表面的酰胺N会先转变成氧化氮,随后转变成吡啶和吡咯N,并最终转换成石墨N。恒流电化学处理后CF/环氧树脂复合材料的层间剪切强度(ILSS)较未处理的提高了132%,同时CF拉伸强度略有提高,表明有机复合电解液是一种温和、有效的CF表面电化学处理液。

     

  • 图  1  三电极体系示意图

    Figure  1.  Sketch of the three electrodes system

    图  2  不同含氮无机物电解液中CF的CV曲线及XPS图谱:(a) E/U/S-2, (b) E/U/C-2, (c) E/U/P-2, (d) XPS曲线

    Figure  2.  CV curve of CF in different nitrogen-containing inorganic electrolytes: (a) E/U/S-2, (b) E/U/C-2, (c) E/U/P-2, and (d) XPS survey spectra of CF

    图  3  不同含氮有机物电解液中CF的CV曲线及XPS图谱:(a) E/U/S, (b) E/S, and (c) XPS曲线

    Figure  3.  CV curve of CF in different nitrogen-containing organic electrolyte solutions: (a) E/U/S, (b) E/S, and (c) XPS spectra of CF

    图  4  CF的不同CV循环次数下XPS的高分辨N1 s谱

    Figure  4.  XPS spectrums of N1 s under different cycle (1, 8, 15, 20, 50, 70)

    图  5  CF表面氮化反应历程

    Figure  5.  Schematic diagram of the CF surface nitridation reaction path

    图  6  不同水含量溶液处理后CF的SEM照片

    Figure  6.  SEM images of CF after treatment with different water content solutions

    图  7  电解液E/U/S-50中处理前后CF的拉曼图谱

    Figure  7.  Raman spectrum of CF before and after treatment with E/U/S-50 electrolyte

    表  1  CV实验参数

    Table  1.   Cyclic voltammetry experimental conditions

    ElectrolyteSampleScanning
    speed/(mV·s−1)
    EG /NH4HSO4E/S150
    EG/urea/NH4HSO4E/U/S150
    EG/urea/NH4HSO4/2wt%H2OE/U/S-2150
    EG/urea/NH4HCO3/2wt%H2OE/U/C-2150
    EG/urea/NH4H2PO3/2wt%H2OE/U/P-2150
    EG/urea/NH4HSO4E/U/S20
    EG/urea/NH4HSO4/1wt%H2OE/U/S-120
    EG/urea/NH4HSO4/2wt%H2OE/U/S-220
    EG/urea/NH4HSO4/5wt%H2OE/U/S-520
    EG/urea /NH4HSO4/20wt%H2OE/U/S-2020
    EG/urea /NH4HSO4/50wt%H2OE/U/S-5020
    H2O/urea/NH4HSO4H2O/U/S20
    下载: 导出CSV

    表  2  不同CV循环次数下CF表面元素含量

    Table  2.   Element contents on CF surface after treatment with different CV cycles of E/U/S electrolyte

    Cycles01815205070
    O/at%4.976.598.529.3313.07.8010.3
    N/at%0.221.902.593.224.772.383.78
    下载: 导出CSV

    表  3  不同CV循环次数下CF表面的含氧官能团含量

    Table  3.   Contents of oxygen-containing functional groups on CF surface with different cycle

    CycleAtomic fraction of functional groups /at%
    C—CC—OH、C—N、
    C—O—R
    C=OCOOH
    COOR
    088.48.810.362.43
    176.312.640.2310.83
    866.121.1--12.71
    1568.619.33--12.07
    2082.811.791.234.18
    5090.36.871.721.02
    7076.012.050.4911.46
    下载: 导出CSV

    表  4  不同水含量下CV处理的CF表面元素组成

    Table  4.   Element contents on CF surface after treatment with different water content electrolytes

    SampleE/U/SE/U/S-1E/U/S-2E/U/S-5E/U/S-20E/U/S-50H2O /U/S
    C/at%88.1486.9378.5582.8279.9888.7995.06
    O/at%7.809.8516.5913.5215.598.724.26
    N/at%2.383.054.743.664.312.060.49
    Si/at%1.680.170.120.000.130.440.19
    下载: 导出CSV

    表  5  电解液E/U/S-50中处理后CF力学性能变化

    Table  5.   Changes of mechanical properties of CF before and after treatment with E/U/S-50 electrolyte

    Sampleσ/MPaE/GPaε/%ILSS/MPa
    Untreated CF140525410.722
    Treated-CF144785670.851
    Untreated CF240825070.840
    Treated-CF242804990.860
    Notes: σ is the tensile strength; E is the tensile modulus; ε is the elongation at break; ILSS is the interlaminar shear strength.
    下载: 导出CSV
  • [1] WEN Z, XU C, QIAN X, et al. A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent[J]. Applied Surface Science,2019,486:546-554. doi: 10.1016/j.apsusc.2019.04.248
    [2] DANIEL J E, KARYN J, ANDERS J B, et al. Improving the effects of plasma polymerization on carbon fiber using a surface modification pretreatment[J]. Composites:Part A,2021,143:106319. doi: 10.1016/j.compositesa.2021.106319
    [3] XIONG S, ZHAO Y, WANG Y, et al. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method[J]. Applied Surface Science,2021,546:149135. doi: 10.1016/j.apsusc.2021.149135
    [4] PAIVA MC, BERNARDO CA, NARDIN M. Mechanical, surface and interfacial characterization of pitch and PAN-based carbon fibers[J]. Carbon,2000,38(9):1323-1337. doi: 10.1016/S0008-6223(99)00266-3
    [5] YU J, MENG L, FAN D, et al. The oxidation of carbon fibers through K2S2O8/ AgNO3 system that preserves fiber tensile strength[J]. Composites Part B,2014,60:261-267. doi: 10.1016/j.compositesb.2013.12.037
    [6] ZHANG L, KEIKO W. The influence of carboxyl group on nitrogen doping for defective carbon nanotubes toward oxygen reduction reaction[J]. Carbon,2022,189:369-376. doi: 10.1016/j.carbon.2021.12.087
    [7] LOPEZ R O, SANCHEZ G R, SCHULZ J M E, et al. On site formation of N-doped carbon nanofibers, an efficient electrocatalyst for fuel cell applications[J]. International Journal of Hydrogen Energy,2017,42(5):30339-30348.
    [8] FAN Y, ZHAO Z, ZHOU Q, et al. Nitrogen-doped carbon microfibers with porous textures[J]. Carbon,2013,58:128-133. doi: 10.1016/j.carbon.2013.02.040
    [9] RODRIGUEZ-CORVERA C L, FAJARDO-DIAZ J. L, CORTES-LOPEZ A J, et al. Nitrogen-doped carbon fiber sponges by using different nitrogen precursors: synthesis, characterization, and electrochemical activity[J]. Materials Today Chemistry,2019,14:100200. doi: 10.1016/j.mtchem.2019.100200
    [10] PARK S J, KIM M H, LEE J R, CHOI S. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites[J]. Journal of Colloid Interface Science,2000,228(2):287-291. doi: 10.1006/jcis.2000.6953
    [11] PEERA S G, SAHU A K, ARUNCHANDER A, et al. Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells[J]. Carbon,2015,93:130-142. doi: 10.1016/j.carbon.2015.05.002
    [12] MORITA T, TAKAMI N. Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion[J]. Electrochim Acta,2004,49(16):2591-2599. doi: 10.1016/j.electacta.2004.02.010
    [13] LU T, LI Q, SHAO J, et al. Nitrogen and sulfur co-doped porous carbons from polyacrylonitrile fibers for CO2 adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers,2021,128:148-155. doi: 10.1016/j.jtice.2021.08.043
    [14] MA T Y, RAN J, DAI S, JARONIEC M, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes[J]. Angewandte Chemie-international Edition,2014,54(15):1-6.
    [15] 刘福杰, 王浩静, 范立东, 等. MJ系列碳纤维微观结构的剖析[J]. 化工新型材料, 2009, 37(1):41-43.

    LIU Fujie, WANG Haojing, FAN Lidong, et al. Analysis on the microstructure of MJ series carbon fiber[J]. New Chemical Materials,2009,37(1):41-43(in Chinese).
    [16] 张莎, 田艳红, 张学军. 电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J]. 复合材料学报, 2012, 29(3):1-8.

    ZHANG Sha, TIAN Yanhong, ZHANG Xuejun, et al. Effect of electrochemical oxidation on the surface structure and mechanical performance of high strength and high modulus carbon fibres[J]. Acta Materiae Compositae Sinica,2012,29(3):1-8(in Chinese).
    [17] 乔伟静, 田艳红, 张学军. 国产聚丙烯腈基高强高模碳纤维电化学氧化表面处理工艺[J]. 复合材料学报, 2018, 35(9):2449-2457.

    QIAO Weijing, TIAN Yanhong, ZHANG Xuejun. Electrochemical oxidation surface treatment of domestic polyacrylonitrile-based high strength and high modulus carbon fiber[J]. Acta Materiae Compositae Sinica,2018,35(9):2449-2457(in Chinese).
    [18] KAINOURGIOS P, KARTSONAKIS I A, DRAGATOGIANNIS D A, et al. Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins[J]. Applied Surface Science,2017,416:593-604. doi: 10.1016/j.apsusc.2017.04.214
    [19] TIWARI S, BIJWE J. Surface treatment of carbon fibers - a review[J]. Procedia Technology,2014,14:505-512. doi: 10.1016/j.protcy.2014.08.064
    [20] DONNET J B, GUILPAIN G. Surface treatments and properties of carbon fibers[J]. Carbon,1989,27(5):749-757. doi: 10.1016/0008-6223(89)90209-1
    [21] BASOVA Y V, HATORI H, YAMADA Y, MIYASHITA K. Effect of oxidation–reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J]. Electrochemistry Communications,1999,1(11):540-544. doi: 10.1016/S1388-2481(99)00112-5
    [22] BISMARCK A, KUMRU M E, SPRINGER J, SIMITZIS J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1-4):45-55. doi: 10.1016/S0169-4332(98)00929-5
    [23] GEORGIOU P, WALTON J, SIMITZIS J. Surface modification of pyrolyzed carbon fibers by cyclic voltammetry and their characterization with XPS and dye adsorption[J]. Electrochimica Acta,2010,55(3):1207-1216. doi: 10.1016/j.electacta.2009.09.068
    [24] RAHMANI H, ASHORI A, VARNASERI N. Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix[J]. Polymers for Advanced Technologies,2016,27(6):805-811. doi: 10.1002/pat.3720
    [25] LIU J, TIAN Y, CHEN Y, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204. doi: 10.1016/j.apsusc.2010.03.141
    [26] WANG Y Q, ZHANG F Q, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 25. Interfacial interactions between PEKK polymer and carbon fibers electrochemically oxidized in nitric acid and degradation in a saline solution[J]. Chemistry Of Materials,2001,13(3):832-841. doi: 10.1021/cm000555t
    [27] 徐显亮, 张月义, 马全胜, 等. 国产PAN基高强中模型碳纤维的电化学表面改性研究[J]. 玻璃钢/复合材料, 2016(12):81-85.

    XU Xianliang, ZHANG Yueyi, MA Quansheng, et al. Study on electrochemical surface modification of PAN-based carbon fiber of high strength and middle modulus[J]. Fibre Reinforced Plastics/Composites,2016(12):81-85(in Chinese).
    [28] QIAN X. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation. Applied Surface Science, 2012, 259 (15 October): 238-244.
    [29] 吴波, 郑帼, 孙玉, 等. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9):52-57.

    WU Bo, ZHENG Guo, SUN Yu, et al. Surface properties of PAN-based carbon fibers modified by electrochemical oxidization in organic electrolyte systems[J]. J Mater Eng,2016,44(9):52-57(in Chinese).
    [30] HAN F, DUAN D, JING W, et al. Synthesis and plasma treatment of nitrogen-doped graphene fibers for high-performance supercapacitors[J]. Ceramics International,2022,48(2):2058-2067. doi: 10.1016/j.ceramint.2021.09.291
    [31] HOU X, HU Q, ZHANG P, et al. Oxygen reduction reaction on nitrogen-doped graphene nanoribbons: a density functional theory study[J]. Chemical Physics Letters 2016, 663: 123-127.
    [32] ZENG K, WEI M Wei 1, LI C, et al. PPy-derived N, P co-doped hollow carbon fiber decorated with island-like Ni2P nanoparticles as bifunctional oxygen electrocatalysts[J]. Journal of Electroanalytical Chemistry,2021,882:115013. doi: 10.1016/j.jelechem.2021.115013
    [33] LIU Jing, SONG Ping, RUAN Mingbo. Catalytic properties of graphitic and pyridinic nitrogen doped on carbon black for oxygen reduction reaction[J]. Chinese Journal of Catalysis,2016,37(7):1119-1126. doi: 10.1016/S1872-2067(16)62456-7
    [34] KIM Y J, LEE H J, LEE S W, et al. Effects of sulfuric acid treatment on the microstructure and electrochemical performance of a polyacrylonitrile (PAN)-based carbon anode[J]. Carbon,2005,43(1):163-169. doi: 10.1016/j.carbon.2004.09.001
    [35] SENOZ E, WOOL R P. Microporous carbon–nitrogen fibres from keratin fibres by pyrolysis[J]. Journal of Applied Polymer Science,2010,118(3):1752-1765.
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-03-26
  • 修回日期:  2022-03-18
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回