留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能

纪浩楠 易昌凤 徐祖顺 杨晓昕

纪浩楠, 易昌凤, 徐祖顺, 等. 二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能[J]. 复合材料学报, 2021, 39(0): 1-10
引用本文: 纪浩楠, 易昌凤, 徐祖顺, 等. 二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能[J]. 复合材料学报, 2021, 39(0): 1-10
Haonan JI, Changfeng YI, Zushun XU, Xiaoxin YANG. Preparation of titanium dioxide/ZIF-8 composite superhydrophobic sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica.
Citation: Haonan JI, Changfeng YI, Zushun XU, Xiaoxin YANG. Preparation of titanium dioxide/ZIF-8 composite superhydrophobic sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica.

二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能

基金项目: 湖北省重点研发计划项目(2020BAB087),国家自然科学基金面上项目(51573039)
详细信息
    通讯作者:

    易昌凤,教授,硕士生导师,研究方向为乳液聚合、超支化聚合物、特种涂料等 E-mail: changfengyi@hubu.edu.cn

  • 中图分类号: TB302

Preparation of titanium dioxide/ZIF-8 composite superhydrophobic sponge and its oil-water separation performance

  • 摘要: 含油废水的处理海上溢油问题及含油废水的排放对经济与环境带来了巨大的破坏。利用聚多巴胺将自制的双尺度ZIF-8/TiO2纳米粒子粘附到聚氨酯海绵,通过十八胺改性制备出超疏水油水分离海绵,通过红外测试仪、X射线衍射仪等对其结构进行了表征分析;利用ZIF-8和TiO2两种纳米粒子构建双尺度粗糙结构,并深入探究了两种粒子的用量对复合涂层表面性能的影响。结果表明当纳米粒子ZIF-8/TiO2添加摩尔比为2∶1时,接触角达到最大值153°;复合海绵有良好的油水分离性能,吸收能力是其自重的40至118倍,分离效率平均在96%以上;在808 nm激光照射下10 s内温度可升高55℃,有良好的光热转换性能。

     

  • 图  1  TiO2/ZIF-8复合超疏水海绵制备

    Figure  1.  Preparation of TiO2/ZIF-8 Composite Superhydrophobic Sponge

    图  2  (a)不同温度的下TiO2的颜色变化照片;(b)不同温度下的紫外-吸收图;(c)不同时间下400℃烧结的TiO2的紫外-吸收图

    Figure  2.  (a) Optical photos of titanium dioxide fired at different temperatures; (b) Ultraviolet absorption curve of titanium dioxide fired at different temperatures; (c) Ultraviolet absorption curve of titanium dioxide fired at 400℃ at different time

    图  3  TiO2和ZIF-8的红外曲线

    Figure  3.  Infrared absorption curve of TiO2 and ZIF-8

    图  4  TiO2(a)和ZIF-8 (b)的X射线衍射分析曲线

    Figure  4.  X-ray diffraction curve of TiO2(a) and ZIF-8 (b)

    图  5  海绵水接触角随ZIF-8 (a)和 ODA(b)以及 TiO2 (c)和 ODA (d)含量的变化

    Figure  5.  Change of sponge contact angle with ZIF-8 content (a) and ODA content (b); TiO2 content (c) and ODA content (d)

    图  6  海绵水接触角随TiO2 和 ZIF-8粒子比例的变化

    Figure  6.  Contact angle of the sponge changes with the TiO2 and ZIF-8 particle ratio

    图  7  TiO2粒子(a)、ZIF-8 粒子(b)、未处理海绵(c)和双尺度海绵(d)的场发射图

    Figure  7.  Field emission scanning electron microscope topography of TiO2 nanoparticles (a), ZIF-8 nanoparticles(b), untreated sponge(c) and two-scale sponge (d)

    图  8  TiO2/ZIF-8复合海绵的XPS谱:

    Figure  8.  XPS spectra of TiO2/ZIF-8 composite sponge ((a) Full survey; (b) C 1s; (c) N 1s; (d) Zn 2p; (e) Ti 2p; and (f) O 1s)

    图  9  (a)(b) TiO2/ZIF-8复合海绵的吸油过程;(c)不同种类油的吸收容量;(d)不同种类油的分离图;(e)油水分离过程

    Figure  9.  (a)(b) Adsorption process of different oily substances in TiO2/ZIF-8 compound sponge; (c) Absorption capacity of different kinds of oil; (d) Separation efficiency of different types of oil; (e) Oil-water separation process

    图  10  (a)-(c)不同酸碱度下的TiO2/ZIF-8复合海绵超疏水效果;(d)(e)疏水亲油;(g)摩擦100次后的电镜图;(h)吸油/回收循环图

    Figure  10.  (a)-(c)Superhydrophobic phenomenon under different PH of TiO2/ZIF-8 compound sponge; (d) Phenomenon after dripping of untreated sponge and composite sponge; (e) Super-hydrophobic and super-lipophilic phenomena of composite sponge; (f) Dyed water droplets on the composite sponge; (h) Diagram of the oil absorption/recovery cycle

    图  11  吸油前后TiO2/ZIF-8复合海绵的光热曲线Fig.11Photothermal curve of TiO2/ZIF-8 compound sponge before and after absorpting oil

    表  1  不同照射时间TiO2/ZIF-8复合海绵的温度

    Table  1.   Temperature of TiO2/ZIF-8 compound sponge before and after absorpting oil irradiating 10 s and 10 min

    SamplePure PU spongeSuper hydrophobic sponge
    before oil absorption
    Super hydrophobic sponge
    after oil absorption
    Temperature (10 s)/℃2075.958.1
    Temperature (10 min)/℃25.990.368.3
    下载: 导出CSV
  • [1] WANG B, YANG X, SHA D, et al. Silane functionalized polyvinyl-alcohol formaldehyde sponges on fast oil absorption[J]. ACS Applied Polymer Materials,2020,2(11):5309-5317. doi: 10.1021/acsapm.0c01052
    [2] NISTICO R, FRANZOSO F, CESANO F, et al. Chitosan-derived iron oxide systems for magnetically guided and efficient water purification processes from polycyclic aromatic hydrocarbons[J]. ACS Sustainable Chemistry & Engineering,2017,5(1):793-801.
    [3] GE J, ZHAO H Y, ZHU H W, et al. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives[J]. Advanced materials,2016,28(47):10459-10490. doi: 10.1002/adma.201601812
    [4] TANG X, SHEN C, ZHU W, et al. A facile procedure to modify filter paper for oil–water separation[J]. RSC advances,2017,7(48):30495-30499. doi: 10.1039/C7RA03754F
    [5] EMELYANENKO A M, BOINOVICH L B, BEZDOMNIKOV A A, et al. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions[J]. ACS applied materials & interfaces,2017,9(28):24210-24219.
    [6] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A,2017,5(31):16025-16058. doi: 10.1039/C7TA02070H
    [7] WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews,2015,44(1):336-361. doi: 10.1039/C4CS00220B
    [8] CAI Y, CHEN D, LI N, et al. Self-healing and superwettable nanofibrous membranes for efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A,2019,7(4):1629-1637. doi: 10.1039/C8TA10254F
    [9] ZHU Y, WANG D, JIANG L, et al. Recent progress in developing advanced membranes for emulsified oil/water separation[J]. NPG Asia Materials,2014,6(5):e101-e101. doi: 10.1038/am.2014.23
    [10] WEN Q, DI J, JIANG L, et al. Zeolite-coated mesh film for efficient oil–water separation[J]. Chemical Science,2013,4(2):591-595. doi: 10.1039/C2SC21772D
    [11] WEI Y, QI H, GONG X, et al. Specially wettable membranes for oil–water separation[J]. Advanced Materials Interfaces,2018,5(23):1800576. doi: 10.1002/admi.201800576
    [12] SUN S, TANG S, CHANG X, et al. A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications[J]. Applied Surface Science,2019,473:1049-1061. doi: 10.1016/j.apsusc.2018.12.215
    [13] DONG B, GUO Y, SUN S, et al. Shish–kebab-structured UHMWPE coating for efficient and cost-effective oil–water separation[J]. ACS Applied Materials & Interfaces, 2020.
    [14] ZHANG Y, ZHANG N, ZHOU S, et al. Facile preparation of ZIF-67 coated melamine sponge for efficient oilwater separation[J]. Industrial & Engineering Chemistry Research,2019,58(37):17380-17388.
    [15] AZAM T, PERVAIZ E, JAVED S, et al. Tuning the hydrophobicity of MOF sponge for efficient oil/water separation[J]. Chemical Physics Impact,2020,1:100001. doi: 10.1016/j.chphi.2020.100001
    [16] YU F, CAO L, MENG Z, LIN N, et al. Crosslinked waterborne polyurethane with high waterproof performance[J]. Polymer Chemistry,2016,7(23):3913-22. doi: 10.1039/C6PY00350H
    [17] 何影格, 陈媛媛, 刘维仪, 等. 超浸润性可逆切换的超双疏复合海绵材料的制备及油水分离应用[J]. 复合材料学报, 2020, 38(3):38-862.

    HE Y G, CHEN Y Y, LIU W Y, et al. Preparation of superamphiphobic composite sponge material with super-wetting reversible switching and applicationin oil-water separation[J]. ActaMateriae Compositae Sinica,2020,38(3):38-862(in Chinese).
    [18] 谢俊. 亲油疏水海绵和纺织布的制备及其性能研究[D]. 广州: 华南理工大学, 2020.

    XIE J. Preparation and properties of oleophilic and hydrophobic sponge and textile fabric[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
    [19] ZHU H, YANG S, CHEN D, et al. A robust absorbent material based on light-responsive superhydrophobic melamine sponge for oil recovery[J]. Advanced Materials Interfaces,2016,3(5):1500683. doi: 10.1002/admi.201500683
    [20] WANG Y, SHANG B, HU X, et al. Temperature control of mussel-inspired chemistry toward hierarchical superhydrophobic surfaces for oil/water separation [J]. Advanced Materials Interfaces, 2017, 4(2).
    [21] GAO Z, ZHOU S, ZHOU Y, et al. Bio-inspired magnetic superhydrophobic PU-PDA-Fe3O4-Ag for effective oil-water separation and its antibacterial activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,613:126122. doi: 10.1016/j.colsurfa.2020.126122
    [22] LIU C, YANG J, TANG Y, et al. Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,468:10-16.
    [23] 袁鹏程. 光响应g-C3N4/TiO2-PVDF膜的制备及油水分离性能研究[D]. 济南: 山东大学, 2021.

    YUAN P C. Preparation of photoresponsive g-C3N4/TiO2-PVDF membrane and its oil/water separation performance[D]. Jinan: Shandong University, 2021(in Chinese).
    [24] TAN H, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale,2014,6(17):10216-10223. doi: 10.1039/C4NR02677B
    [25] CHEN S, WANG Y, LI J, et al. Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing[J]. Materials Research Bulletin,2018,98:280-287. doi: 10.1016/j.materresbull.2017.10.036
    [26] 谢浩, 杜晴, 刘俊逸. Ti3+自掺杂黑色TiO2薄膜的制备及可见光催化性能研究[J]. 化工新型材料, 2021, 49(9):267-275.

    XIE H, DU Q, LIU J Y. Syntheise of Ti3+ self-doped black TiO2 film with visible-light photocatalytic performance[J]. New Chemical Materials,2021,49(9):267-275(in Chinese).
    [27] DANN T, RAPJEL J, GAMMON S T, et al. Anatase Titanium Dioxide Imparts Photoluminescent Properties to PA2200 Commercial 3D Printing Material to Generate Complex Optical Imaging Phantoms[J]. Materials, 2021, 14(7).
    [28] 樊婷玥, 任煜, 赵紫瑶, 等. Ag6Si2O7-TiO2/PP复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2022:39.

    FAN T Y, REN Y, ZHAO Z Y, et al. Preparation and antibacterial properties of Ag6Si2O7, -TiO2/PP composite photocatalytic material[J]. ActaMateriae Compositae Sinica,2022:39(in Chinese).
  • 加载中
计量
  • 文章访问数:  181
  • HTML全文浏览量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 录用日期:  2021-12-08
  • 修回日期:  2021-12-02
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回