留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光驱动的CoOx/WO3-x光热协同催化CO2还原

杨娟 田然 王大钊 戴俊 杜智华

杨娟, 田然, 王大钊, 等. 光驱动的CoOx/WO3-x光热协同催化CO2还原[J]. 复合材料学报, 2023, 40(9): 5158-5169. doi: 10.13801/j.cnki.fhclxb.20221128.001
引用本文: 杨娟, 田然, 王大钊, 等. 光驱动的CoOx/WO3-x光热协同催化CO2还原[J]. 复合材料学报, 2023, 40(9): 5158-5169. doi: 10.13801/j.cnki.fhclxb.20221128.001
YANG Juan, TIAN Ran, WANG Dazhao, et al. Light-driven photothermal synergistic catalytic CO2 reduction over CoOx/WO3-x[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5158-5169. doi: 10.13801/j.cnki.fhclxb.20221128.001
Citation: YANG Juan, TIAN Ran, WANG Dazhao, et al. Light-driven photothermal synergistic catalytic CO2 reduction over CoOx/WO3-x[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5158-5169. doi: 10.13801/j.cnki.fhclxb.20221128.001

光驱动的CoOx/WO3-x光热协同催化CO2还原

doi: 10.13801/j.cnki.fhclxb.20221128.001
基金项目: 国家自然科学基金(52074103;U2004194);河南省科技攻关重点项目(222102320095);河南省教育厅重点科研项目(21 A440008)
详细信息
    通讯作者:

    杨娟,博士,教授,博士生导师,研究方向为光催化与能源化学 E-mail: yangjuan@hpu.edu.cn

  • 中图分类号: O643.3

Light-driven photothermal synergistic catalytic CO2 reduction over CoOx/WO3-x

Funds: National Natural Science Foundation of China (52074103; U2004194); Key Science and Technology Project of Henan Province (222102320095); Key Scientific Research Project of Henan Province Education Department (21 A440008)
  • 摘要: 基于半导体光催化还原的人工光合成技术可在室温常压下将CO2转化为碳基燃料,被认为是同时缓解能源短缺和环境危机的理想策略,但因已有光催化剂对太阳光利用不足、光生电荷复合快,致使CO2光还原能量转换效率仍较低。采用水热法并结合表面浸渍过程首次制备出无定型CoOx/WO3-x复合光催化剂,通过XRD、TEM、XPS、EPR和紫外-可见-近红外吸收光谱等测试技术对催化剂的晶相组成、微观形貌、光吸收特性与氧空位缺陷进行系统表征。CO2光还原实验结果表明可见-近红外光照射3 h后,WO3-x为催化剂仅可检测到3.2 μmol·g−1的CH4,复合CoOx可显著提升WO3-x的CO2光催化还原性能,相同条件下最优催化剂2.5wt%CoOx/WO3-x的CO与CH4产生量分别可达78.2和19.7 μmol·g−1。引入氧空位可在WO3-x的能带结构中形成一新的中间能级,增强近红外光吸收并使催化剂表面产生局部温升;复合CoOx可在调控WO3-x导带电势的同时,增强光生电荷的分离与迁移,光热效应和CoOx助催化剂的协同作用是CO2光催化转化性能增强的主要原因。此外,复合光催化剂CoOx/WO3-x具有优异的长期催化与结构稳定性。

     

  • 图  1  CoOx/WO3-x催化剂制备过程示意图

    Figure  1.  Schematic diagram of CoOx/WO3-x catalysts preparation process

    图  2  CoOx/WO3-x样品的XRD图谱

    Figure  2.  XRD patterns of CoOx/WO3-x samples

    图  3  (a) 单一WO3-x的TEM图像;((b)~(d)) 2.5wt%CoOx/WO3-x样品的TEM与HRTEM图像

    Figure  3.  (a) TEM image of bare WO3-x; ((b)-(d)) TEM and HRTEM images of 2.5wt%CoOx/WO3-x sample

    d—Distance

    图  4  (a) 2.5wt%CoOx/WO3-x样品的HAADF-STEM图像;((b)~(d)) 对应的元素Mapping图

    Figure  4.  (a) HAADF-STEM image of 2.5wt%CoOx/WO3-x sample; ((b)-(d)) Element mapping images of 2.5wt%CoOx/WO3-x sample

    图  5  单一WO3-x与2.5wt%CoOx/WO3-x的XPS全谱 (a)、W4f高分辨XPS图谱 (b) 和O1s高分辨XPS图谱 (c)、2.5wt%CoOx/WO3-x的Co2p高分辨XPS图谱 (d)

    Figure  5.  XPS survey spectra of bare WO3-x and 2.5wt%CoOx/WO3-x (a), high-resolution W4f XPS spectra (b) and O1s XPS spectra of WO3-x and 2.5wt%CoOx/WO3-x (c), high-resolution Co2p XPS spectrum of 2.5wt%CoOx/WO3-x (d)

    图  6  WO3、WO3-x与2.5wt%CoOx/WO3-x的室温ESR谱

    Figure  6.  Room temperature ESR spectra of WO3, WO3-x and 2.5wt%CoOx/WO3-x

    g—Dimensionless factor

    图  7  WO3、WO3-x与2.5wt%CoOx/WO3-x的紫外-可见-近红外吸收光谱 (a) 及相应的(αhv)2hv曲线 ((b)~(d))

    Figure  7.  UV-Vis-NIR absorption spectra (a) and corresponding (αhv)2 vs. hv curves ((b)-(d)) of WO3, WO3-x and 2.5wt%CoOx/WO3-x

    CB—Conduction band; VB—Valence band; IEL—Intermediate energy level; h—Planck constant; v—Frequency; α—Absorptivity index

    图  8  (a) 不同反应条件下C1产物与O2生成量;可见-近红外光照射(b)和不同光源照射条件下(c)CoOx/WO3-x催化剂的C1产物生成量;(d) 可见-近红外光照射下2.5wt%CoOx/WO3-x的长期催化稳定性

    Figure  8.  (a) Generation amount of C1 products and O2 under different reaction conditions; Generation amount of C1 products on different CoOx/WO3-x under Vis-NIR light (b) and under different light source irradiation (c); (d) Long-time catalytic stability of 2.5wt%CoOx/WO3-x under Vis-NIR light

    NIR—Near infrared ray

    图  9  36 h CO2光还原实验后2.5wt%CoOx/WO3-x催化剂的XRD图谱(插图为对应的TEM图像) (a) 和Co2p高分辨XPS谱图 (b)

    Figure  9.  XRD pattern (inset is the corresponding TEM image) (a) and high-resolution Co2p XPS spectra (b) of the used 2.5wt%CoOx/WO3-x catalyst after 36 h CO2 photoreduction

    图  10  WO3-x (a) 与2.5wt%CoOx/WO3-x催化剂 (b) 的莫特-肖特基曲线

    Figure  10.  Mott-Schottky plots of WO3-x (a) and 2.5wt%CoOx/WO3-x catalysts (b)

    C-2—Reciprocal of interface capacitance squared; ECB—Conduction band potential; Efb—Flat band potential

    图  11  单一WO3-x、2.5wt%CoOx/WO3-x和4.0wt%CoOx/WO3-x样品的瞬态光电流响应谱 (a) 与电化学阻抗谱 (b)

    Figure  11.  Transient photocurrent response spectra (a) and electrochemical impedance spectra (b) of bare WO3-x, 2.5wt%CoOx/WO3-x and 4.0wt%CoOx/WO3-x samples

    图  12  光驱动的CoOx/WO3-x光热协同催化CO2还原性能增强机制示意图

    Figure  12.  Performance enhancing mechanism diagram of light driven photothermal synergistic catalytic CO2 reduction over CoOx/WO3-x

    VIS—Visible light

    表  1  CoOx/WO3-x复合催化剂中Co元素的实测含量

    Table  1.   Actual content of Co element in CoOx/WO3-x composite catalysts

    SampleAddition content
    of Co/wt%
    Measured content
    of Co/wt%
    0.8wt%CoOx/WO3-x0.80.79
    1.6wt%CoOx/WO3-x1.61.57
    2.5wt%CoOx/WO3-x2.52.48
    3.2wt%CoOx/WO3-x3.23.17
    4.0wt%CoOx/WO3-x4.03.95
    下载: 导出CSV

    表  2  CO2光催化还原产物生成速率的比较

    Table  2.   Comparison of products generation rate for CO2 photocatalytic reduction

    PhotocatalystCO yield/(μmol·g−1·h−1)CH4 yield/(μmol·g−1·h−1)Reaction conditionReference
    MoO3-x 10.3 2.08 300 W Xe lamp UV-Vis-IR [20]
    Bi2S3/UiO-66 25.6 300 W Xe lamp UV-Vis-IR [17]
    C-doped WO3-x 23.2 1.01 300 W Xe lamp an AM1.5 G filter [36]
    Bi4TaO8Cl/W18O49 23.42 180 mW/cm2 solar light, 393 K [42]
    WO3 nanosheets 1.19 300 W Xe lamp Visible light [43]
    TiO2-x(A/B)-CoOx 16.46 10.02 150 W UV lamp 393 K [44]
    WO3/LaTiO2N 2.21 0.36 300 W Xe lamp Visible light [45]
    WO3-x/g-C3N4 8.3 500 W Xe lamp [46]
    2.5wt%CoOx/WO3-x 26.1 6.57 300 W Xe lamp Vis-NIR This work
    下载: 导出CSV
  • [1] SHARIFZADEH M, WANG L, SHAH N. Integrated biorefineries: CO2 utilization for maximum biomass conversion[J]. Renewable and Sustainable Energy Reviews,2015,47:151-161. doi: 10.1016/j.rser.2015.03.001
    [2] JIA J, QIAN C X, DONG Y C, et al. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: Defect engineering-perfecting imperfection[J]. Chemical Society Reviews,2017,46(15):4631-4644. doi: 10.1039/C7CS00026J
    [3] SHEN H, GU Z X, ZHENG G F. Pushing the activity of CO2 electroreduction by system engineering[J]. Science Bulletin,2019,64(24):1805-1816. doi: 10.1016/j.scib.2019.08.027
    [4] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature,1979,277(5698):637-638. doi: 10.1038/277637a0
    [5] LI X, YU J G, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews,2019,119(6):3962-4179. doi: 10.1021/acs.chemrev.8b00400
    [6] JI Y F, LUO Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2 (101) surface[J]. ACS Catalysis,2016,6(3):2018-2025. doi: 10.1021/acscatal.5b02694
    [7] ZHAO L H, YE F, WANG D M, et al. Lattice engineering on metal cocatalysts for enhanced photocatalytic reduction of CO2 into CH4[J]. ChemSusChem,2018,11(19):3524-3533. doi: 10.1002/cssc.201801294
    [8] LIU L J, ZHAO H L, ANDINO J M, et al. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry[J]. ACS Catalysis,2012,2(8):1817-1828. doi: 10.1021/cs300273q
    [9] LI P, HU H F, LUO G, et al. Crystal facet-dependent CO2 photoreduction over porous ZnO nanocatalysts[J]. ACS Applied Materials & Interfaces,2020,12(50):56039-56048.
    [10] WANG S H, ZHAN J W, CHEN K, et al. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction[J]. ACS Sustainable Chemistry & Engineering,2020,8(22):8214-8222.
    [11] ZHANG Z J, LI L, JIANG Y, et al. Step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets for efficient CO2 photoreduction[J]. Inorganic Chemistry,2022,61(7):3351-3360. doi: 10.1021/acs.inorgchem.2c00012
    [12] CHO K M, KIM K H, PARK K, et al. Amine-functionalized graphene/CdS composite for photocatalytic reduction of CO2[J]. ACS Catalysis,2017,7(10):7064-7069. doi: 10.1021/acscatal.7b01908
    [13] CAI X Y, ZHU M S, ELBANNA O A, et al. Au nanorod photosensitized La2Ti2O7 nanosteps: Successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution[J]. ACS Catalysis,2018,8:122-131. doi: 10.1021/acscatal.7b02972
    [14] LIU S, CHAI J, SUN S H, et al. Site-selective photosynthesis of Ag–AgCl@Au nanomushrooms for NIR-II light-driven O2- and O2·– evolving synergistic photothermal therapy against deep hypoxic tumors[J]. ACS Applied Materials & Interfaces,2021,13(39):46451-46463.
    [15] 李成欣, 高助威, 刘钟馨, 等. 氧化石墨烯负载无纺布复合膜的制备及光热转换性能[J]. 复合材料学报, 2021, 38(12):4255-4264. doi: 10.13801/j.cnki.fhclxb.20210304.001

    LI Chengxin, GAO Zhuwei, LIU Zhongxin, et al. Preparation of graphene oxide supported non-woven fabric composite membrane and its photothermal conversion performance[J]. Acta Materiae Compositae Sinica,2021,38(12):4255-4264(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210304.001
    [16] MOON H K, LEE S H, CHOI H C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes[J]. ACS Nano,2009,3(11):3707-3713. doi: 10.1021/nn900904h
    [17] CHEN X, LI Q, LI J J, et al. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental,2020,270:118915. doi: 10.1016/j.apcatb.2020.118915
    [18] LI R Y, ZHANG L B, SHI L, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS Nano,2017,11(4):3752-3759. doi: 10.1021/acsnano.6b08415
    [19] KUWAHARA Y, YOSHIMURA Y, HAEMATSU K, et al. Mild deoxygenation of sulfoxides over plasmonic molybdenum oxide hybrid with dramatic activity enhancement under visible light[J]. Journal of the American Chemical Society,2018,140(29):9203-9210. doi: 10.1021/jacs.8b04711
    [20] LI J, YE Y H, YE L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x[J]. Journal of Materials Chemistry A,2019,7(6):2821-2830. doi: 10.1039/C8TA10922B
    [21] JI Y F, LUO Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: The essential role of oxygen vacancy[J]. Journal of the American Che-mical Society,2016,138(49):15896-15902. doi: 10.1021/jacs.6b05695
    [22] WANG M, SHEN M, JIN X X, et al. Oxygen vacancy generation and stabilization in CeO2–x by Cu introduction with improved CO2 photocatalytic reduction activity[J]. ACS Catalysis,2019,9(5):4573-4581. doi: 10.1021/acscatal.8b03975
    [23] LI X, WEN J Q, LOW J, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J]. Science China Materials,2014,57(1):70-100. doi: 10.1007/s40843-014-0003-1
    [24] WANG S Y, TERAMURA K, HISATOMI T, et al. Highly selective photocatalytic conversion of carbon dioxide by water over Al-SrTiO3 photocatalyst modified with silver–metal dual cocatalysts[J]. ACS Sustainable Chemistry& Engineering,2021,9(28):9327-9335.
    [25] WANG Y O, GODIN R, DURRANT J R, et al. Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions[J]. Angewandte Chemie-International Edition,2021,60(38):20811-20816. doi: 10.1002/anie.202105570
    [26] WANG Y O, CHEN E Q, TANG J W. Insight on reaction pathways of photocatalytic CO2 conversion[J]. ACS Catalysis,2022,12(12):7300-7316. doi: 10.1021/acscatal.2c01012
    [27] YIN G, NISHIKAWA M, NOSAKA Y, et al. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets[J]. ACS Nano,2015,9(2):2111-2119. doi: 10.1021/nn507429e
    [28] YAMAKATA A, KAWAGUCHI M, NISHIMURA N, et al. Behavior and energy states of photogenerated charge carriers on Pt- or CoOx-loaded LaTiO2N photocatalysts: Time-resolved visible to mid-infrared absorption study[J]. Journal of Physical Chemistry C,2014,118(41):23897-23906. doi: 10.1021/jp508233z
    [29] ZHANG H Y, GUO C F, REN J B, et al. Beyond CoOx: A versatile amorphous cobalt species as an efficient cocatalyst for visible-light-driven photocatalytic water oxidation[J]. Chemical Communications,2019,55(93):14050-14053. doi: 10.1039/C9CC07835E
    [30] ZHANG J K, YU Z B, GAO Z, et al. Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production[J]. Angewandte Chemie-International Edition,2017,56(3):816-820. doi: 10.1002/anie.201611137
    [31] BILLO T, FU F, RAGHUNATH P, et al. Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction[J]. Small,2018,14(2):1702928. doi: 10.1002/smll.201702928
    [32] YANG J, CHEN P Y, DAI J, et al. Solar-energy-driven conversion of oxygen-bearing low-concentration coal mine methane into methanol on full-spectrum-responsive WO3-x catalysts[J]. Energy Conversion and Management,2021,247:114767. doi: 10.1016/j.enconman.2021.114767
    [33] 刘颖琪, 翁文斌, 岑檠, 等. FeVO4/Cu3(BTC)2(H2O)3异质结制备及光催化性能[J]. 复合材料学报, 2020, 37(12):3128-3136.

    LIU Yingqi, WENG Wenbin, CEN Qin, et al. Preparation and photocatalytic properties of FeVO4/Cu3(BTC)2(H2O)3 heterojunction[J]. Acta Materiae Compositae Sinica,2020,37(12):3128-3136(in Chinese).
    [34] HUANG J W, ZHANG Y, DING Y. Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation[J]. ACS Catalysis,2017,7(3):1841-1845. doi: 10.1021/acscatal.7b00022
    [35] ZHANG N, LI X Y, YE H C, et al. Oxide defect engineering enables to couple solar energy into oxygen activation[J]. Journal of the American Chemical Society,2016,138(28):8928-8935. doi: 10.1021/jacs.6b04629
    [36] LEI B, CUI W, CHEN P, et al. C−doping induced oxygen-vacancy in WO3 nanosheets for CO2 activation and photoreduction[J]. ACS Catalysis,2022,12(15):9670-9678. doi: 10.1021/acscatal.2c02390
    [37] MONIRUDDIN M, OPPONG E, STEWART D, et al. Designing CdS-based ternary heterostructures consisting of co-metal and CoOx cocatalysts for photocatalytic H2 evolution under visible light[J]. Inorganic Chemistry,2019,58(18):12325-12333. doi: 10.1021/acs.inorgchem.9b01854
    [38] 杨玉蓉, 王佳慧, 马远驰, 等. 双缺陷调控的Z型BiVO4−x/g-C3N4−x异质结的制备及其光催化全解水[J]. 复合材料学报, 2022, 39(10):4642-4651.

    YANG Yurong, WANG Jiahui, MA Yuanchi, et al. Preparation of Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects and photocatalytic overall water splitting[J]. Acta Materiae Compositae Sinica,2022,39(10):4642-4651(in Chinese).
    [39] YANG J, HU S Y, FANG Y R, et al. Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation[J]. ACS Catalysis,2019,9(11):9751-9763. doi: 10.1021/acscatal.9b02408
    [40] ZHENG Y F, FU K X, YU Z H, et al. Oxygen vacancies in a catalyst for VOCs oxidation: Synthesis, characterization, and catalytic effects[J]. Journal of Materials Chemistry A,2022,10(27):14171-14186. doi: 10.1039/D2TA03180A
    [41] LI A, CAO Q, ZHOU G Y, et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface[J]. Angewandte Chemie International Edition,2019,58(41):14549-14555. doi: 10.1002/anie.201908058
    [42] YAN J Y, WANG C H, MA H, et al. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction[J]. Applied Catalysis B: Environmental,2020,268:118401. doi: 10.1016/j.apcatb.2019.118401
    [43] CHEN X Y, ZHOU Y, LIU Q, et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light[J]. ACS Applied Materials & Interfaces,2012,4(7):3372-3377.
    [44] LI Y Y, WANG C H, SONG M, et al. TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam[J]. Applied Catalysis B: Environmental,2019,243:760-770. doi: 10.1016/j.apcatb.2018.11.022
    [45] LIN N S, LIN Y A, QIAN X J, et al. Construction of a 2D/2D WO3/LaTiO2N direct Z-scheme photocatalyst for enhanced CO2 reduction performance under visible light[J]. ACS Sustainable Chemistry & Engineering,2021,9(40):13686-13694.
    [46] HUANG S L, LONG Y J, RUAN S C, et al. Enhanced photocatalytic CO2 reduction in defect-engineered Z-scheme WO3-x/g-C3N4 heterostructures[J]. ACS Omega,2019,4(13):15593-15599. doi: 10.1021/acsomega.9b01969
    [47] YANG J, WANG X H, ZHAO X L, et al. Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity[J]. The Journal of Physical Chemistry C,2015,119(6):3068-3078. doi: 10.1021/jp510041x
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  728
  • HTML全文浏览量:  423
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-11-06
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回