留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叠层结构对碳纤维增强聚醚醚酮复合材料热成形性能的影响

张铁 郑兵 王旭康 陈丹 周华民 李德群 黄志高

张铁, 郑兵, 王旭康, 等. 叠层结构对碳纤维增强聚醚醚酮复合材料热成形性能的影响[J]. 复合材料学报, 2023, 40(6): 3322-3330. doi: 10.13801/j.cnki.fhclxb.20220907.001
引用本文: 张铁, 郑兵, 王旭康, 等. 叠层结构对碳纤维增强聚醚醚酮复合材料热成形性能的影响[J]. 复合材料学报, 2023, 40(6): 3322-3330. doi: 10.13801/j.cnki.fhclxb.20220907.001
ZHANG Tie, ZHENG Bing, WANG Xukang, et al. Effect of laminated structures on thermo-formability of continuous CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3322-3330. doi: 10.13801/j.cnki.fhclxb.20220907.001
Citation: ZHANG Tie, ZHENG Bing, WANG Xukang, et al. Effect of laminated structures on thermo-formability of continuous CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3322-3330. doi: 10.13801/j.cnki.fhclxb.20220907.001

叠层结构对碳纤维增强聚醚醚酮复合材料热成形性能的影响

doi: 10.13801/j.cnki.fhclxb.20220907.001
基金项目: 国家自然科学基金(52175318)
详细信息
    通讯作者:

    黄志高,博士,副教授,博士生导师,研究方向为复合材料成形工艺 E-mail: huangzhigao@hust.edu.cn

  • 中图分类号: TB332

Effect of laminated structures on thermo-formability of continuous CF/PEEK composites

Funds: National Natural Science Foundation of China (52175318)
  • 摘要: 碳纤维增强聚醚醚酮复合材料(CF/PEEK)在航空航天等领域有着日益广泛的应用。本文研究了叠层结构对CF/PEEK板材的力学性能和热成形性的影响,并讨论了相关机制。在同种工艺参数下设计并制造了6种不同叠层结构的板材,其力学性能和热成形性能分别通过0°和90°下的常温拉伸试验及320℃下的杯突试验来表征。实验结果表明正交叠层结构[0/90/0/0/90/0]的拉伸强度和热成形性能最好,而加入编织层或采用非正交叠层均使热成形性能有不同程度的下降,这是由于编织层为整个叠层结构中的薄弱项,而非正交结构在不同方向的拉伸强度差异较大,容易发生纤维-基体失效。

     

  • 图  1  碳纤维增强聚醚醚酮复合材料(CF/PEEK)预浸料的不同叠层结构

    Figure  1.  Different laminated structures of carbon fiber reinforced polyether-ether-ketone composites (CF/PEEK) prepreg

    PW—Plain weave prepreg

    图  2  CF/PEEK板材的制造:(a) 材料叠放顺序;(b) 热成形过程

    Figure  2.  Fabrication of CF/PEEK sheets: (a) Stacking sequence of each material; (b) Thermoforming process

    图  3  CF/PEEK板材拉伸试样

    Figure  3.  Schematic of CF/PEEK sheets specimens

    L—Initial distance between grips; L1—Length of narrow parallel-sided portion; L2—Distance between broad parallel-sided portions; L3—Overall length; h—Preferred thickness; b1—Width at narrow portion; b2—Width at ends; r—Radius

    图  4  Erichsen测试:(a) 试验仪器;(b) 杯突模具图;(c) 杯突模具尺寸

    Figure  4.  Erichsen test: (a) Experiment equipment; (b) Picture of cupping mold; (c) Size of the cupping mold

    Φ—diameter; R2—Radius

    图  5  CF/PEEK板材拉伸试验结果:(a) 0°拉伸方向应力应变曲线;(b) 90°拉伸方向应力应变曲线;(c) 0°/90°方向拉伸强度;(d) 0°/90°拉伸方向最大行程

    Figure  5.  Tensile tests results of CF/PEEK sheets: (a) Stress/stroke curves at 0° tensile direction; (b) Stress/stroke curves at 90° tensile direction; (c) Tensile strength at 0°/90° directions; (d) Maximum stroke at 0°/90° directions

    1-1—Parallel structure with 0° tensile direction; 2-1—Orthogonal structure with 0° tensile direction; 3-1—45° structure with 0° tensile direction; 4-1—60° structure with 0° tensile direction; 5-1—Orthogonal structure replaced by woven laminate with 0° tensile direction; 6-1—Orthogonal structure added woven laminate with 0° tensile direction; 1-2—Parallel structure with 90° tensile direction; 2-2—Orthogonal structure with 90° tensile direction; 3-2—45° structure with 90° tensile direction; 4-2—60° structure with 90° tensile direction; 5-2—Orthogonal structure replaced by woven laminate with 90° tensile direction; 6-2—Orthogonal structure added woven laminate with 90° tensile direction

    图  6  CF/PEEK板材的拉伸失效试样

    Figure  6.  Tensile failure specimens of CF/PEEK sheets

    图  7  CF/PEEK板材拉伸试样的典型失效微观结构

    Figure  7.  Typical failure microstructures of tensile CF/PEEK sheets specimens

    图  8  CF/PEEK板材的Erichsen试验结果:(a) 载荷/行程曲线;(b) 杯突深度(IE值)

    Figure  8.  Erichsen tests results of CF/PEEK sheets: (a) Load/stroke curves; (b) Cup depth (IE value)

    图  9  CF/PEEK板材的杯突试验失效试样

    Figure  9.  CF/PEEK sheets failure specimens of cupping tests

    图  10  CF/PEEK板材杯突试样的失效位置:(a) 2号结构[0/90/0/0/90/0]杯突试样;(b) 5号结构[0/90/PW/90/0]杯突试样;(c) 2号结构数字显微镜(DM)图像;(d) 5号DM图像

    Figure  10.  Failure position of cupping samples of CF/PEEK sheets: (a) No.2 structure [0/90/0/0/90/0] cupping sample; (b) No.5 structure [0/90/PW/90/0] cupping sample; (c) Digital microscope (DM) image of No.2 sample; (d) DM image of No.5 sample

    图  11  热压成形工艺流程

    Figure  11.  Molding process

    图  12  CF/PEEK盒型零件:((a)~(d)) 总体图;((e)~(g)) 细节图

    Figure  12.  CF/PEEK box-shaped part: ((a)-(d)) Overall views; ((e)-(g)) Detailed views

    表  1  单向(UD)纤维预浸料物理性能

    Table  1.   Physical properties of the unidirection (UD) prepregs

    PropertyValue
    Areal weight/gsm218
    Resin content/wt%34
    Fiber content/vol%59
    Tensile strength (0°)/MPa2280
    Tensile strength (90°)/MPa86
    下载: 导出CSV

    表  2  不同叠层结构CF/PEEK板材的力学性能

    Table  2.   Mechanical properties of CF/PEEK sheets of different laminated structures

    NumbersLaminated structuresDirectionsThickness/mmTensile stress
    /MPa
    Maximum stroke/mm
    1-1[0/0/0/0/0/0]0.811142.262.23
    1-2[0/0/0/0/0/0]90°0.8084.950.72
    2-1[0/90/0/0/90/0]0.83910.501.92
    2-2[0/90/0/0/90/0]90°0.76581.791.35
    3-1[0/45/135/135/45/0]0.85687.432.02
    3-2[0/45/135/135/45/0]90°0.83236.201.35
    4-1[0/60/120/120/60/0]0.80720.611.74
    4-2[0/60/120/120/60/0]90°0.84307.221.27
    5-1[0/90/PW/90/0]0.80660.171.37
    5-2[0/90/PW/90/0]90°0.78619.271.33
    6-1[0/90/0/PW/0/90/0]0.91858.202.40
    6-2[0/90/0/PW/0/90/0]90°1.04490.391.67
    下载: 导出CSV

    表  3  不同叠层结构CF/PEEK板材的IE值

    Table  3.   IE values of CF/PEEK sheets of different laminated structures

    NumbersLaminated structuresThickness/mmIE value/mm
    1[0/0/0/0/0/0]0.817.35
    2[0/90/0/0/90/0]0.8313.10
    3[0/45/135/135/45/0]0.806.33
    4[0/60/120/120/60/0]0.815.48
    5[0/90/PW/90/0]0.8310.96
    6[0/90/0/PW/0/90/0]1.048.64
    下载: 导出CSV
  • [1] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):50-56. doi: 10.13801/j.cnki.fhclxb.20200824.005

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Opportuni-ties and challenges for the development of carbon fiber and resin matrix composites industry[J]. Acta Materiae Compositae Sinica,2020,37(11):50-56(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200824.005
    [2] BOUDEAU N, LIKSONOV D, BARRIERE T, et al. Composite based on polyetheretherketone reinforced with carbon fibres, an alternative to conventional materials for femoral implant: Manufacturing process and resulting structural behaviour[J]. Materials & Design,2012,40:148-156.
    [3] HUANG Y, ZHANG L, JIANG Q, LAN, et al. A review on concrete structures strengthened with CFRP sheets bonded with organic and inorganic cementation materials[J]. Advances in Civil Engineering Materials,2019,8:1-8.
    [4] 谌广昌, 姚佳楠, 张金栋, 等. 高性能热塑性复合材料在直升机结构上的应用与展望[J]. 航空材料学报, 2019, 39(5):24-33. doi: 10.11868/j.issn.1005-5053.2019.000035

    CHEN Guangchang, YAO Jia'nan, ZHANG Jindong, et al. Application and prospect of high performance thermo-plastic composites in helicopter structure[J]. Journal of Aeronautical Materials,2019,39(5):24-33(in Chinese). doi: 10.11868/j.issn.1005-5053.2019.000035
    [5] VISHWANATH R, ROHIT B. A review on inspection and maintenance of FRP structures[J]. InIOP Conference Series: Materials Science and Engineering,2019,520:012003. doi: 10.1088/1757-899X/520/1/012003
    [6] YAO S S, JIN F L, RHEE K, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007
    [7] MA Y, UEDA M, YOKOZEKI T, et al. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites[J]. Composite Structures,2019,160:89-99.
    [8] CALIRI M, FERREIRA A, TITA V. A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method[J]. Composite Structures,2016,156:63-77. doi: 10.1016/j.compstruct.2016.02.036
    [9] NIKBAKT S, KAMARIAN S, SHAKERI M. A review on optimization of composite structures Part I: Laminated composites[J]. Composite Structures,2018,195:158-185. doi: 10.1016/j.compstruct.2018.03.063
    [10] MARIATTI M, CHUM P. Effect of laminate configuration on the properties of glass fiber-reinforced plastics (GFRPs) mixed composites[J]. Journal of Reinforced Plastics and Composites,2005,24:1713-1721. doi: 10.1177/0731684405051654
    [11] WU C, GAO Y, FANG J, et al. Discrete topology optimization of ply orientation for a carbon fiber reinforced plastic (CFRP) laminate vehicle door[J]. Materials & Design,2017,128:9-19.
    [12] JING Z, FAN X, SUN Q. Global shared-layer blending method for stacking sequence optimizationdesign and blending of composite structures[J]. Composites Part B: Engineering,2015,69:181-190. doi: 10.1016/j.compositesb.2014.09.039
    [13] LIU Q, PAAVOLA J. Lightweight design of composite laminated structures with frequency constraint[J]. Composite Structures,2016,156:356-360. doi: 10.1016/j.compstruct.2015.08.116
    [14] HO-HUU V, DO-THI T, DANG-TRUNG H, et al. Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method[J]. Composite Structures,2016,146:132-147. doi: 10.1016/j.compstruct.2016.03.016
    [15] AYDIN L, AYDIN O, ARTEM H, et al. Design of dimensionally stable composites using efficient global optimization method[J]. Proceedings of the ImechE,2019,233:156-168.
    [16] MONTE S, INFANTE V, MADEIRA J, et al. Optimization of fibers orientation in a composite specimen[J]. Mechanics of Advanced Materials and Structures,2017,24:410-416. doi: 10.1080/15376494.2016.1191099
    [17] URIYA Y, IKEUCHI K, YANAGIMOTO J. Enhanced formability of thin carbon fiber reinforced plastic sheets in cold/warm embossing with ductile dummy sheets of different thicknesses[J]. International Journal of Material Forming,2015,8:415-421. doi: 10.1007/s12289-014-1184-9
    [18] URIYA Y, YANAGIMOTO J. Suitable structure of thermosetting CFRP sheet for cold/warm forming[J]. International Journal of Material Forming,2016,9:243-252. doi: 10.1007/s12289-015-1227-x
    [19] URIYA Y, YANAGIMOTO J. Erichsen cupping test on thermosetting CFRP sheets[J]. International Journal of Material Forming,2017,10:527-534. doi: 10.1007/s12289-016-1298-3
    [20] ALTIN K, GÖKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology,2018,14:318-326. doi: 10.1016/j.dt.2018.02.001
    [21] HAANAPPEL S P, TEN THIJE R H W, SACHS U, et al. Formability analyses of uni-directional and textile reinforced thermoplastics[J]. Composites Part A: Applied Science and Manufacturing,2014,56:80-92. doi: 10.1016/j.compositesa.2013.09.009
    [22] ISOGAWA S, AOKI H, TEJIMA M. Isothermal forming of CFRTP sheet by penetration of hemispherical punch[J]. Procedia Engineering,2014,81:1620-1626. doi: 10.1016/j.proeng.2014.10.201
    [23] ZHENG B, GAO X P, LI M Y, et al. Formability and failure mechanisms of woven CF/PEEK composite sheet in solid-state thermoforming[J]. Polymers,2019,11:966. doi: 10.3390/polym11060966
    [24] LEE J, KIM B, LEE S, et al. A study on the process design of prepreg compression forming using rapid heating and cooling system[J]. Procedia Engineering,2017,207:84-89. doi: 10.1016/j.proeng.2017.10.742
    [25] ZHANG J, YANAGIMOTO J. Design and fabrication of formable CFRTP core sandwich sheets[J]. CIRP Annals,2019,68(1):281-284. doi: 10.1016/j.cirp.2019.04.060
    [26] ISO. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: ISO-527-2[S]. Geneva: ISO, 1993.
    [27] ISO. Metallic materials. Sheet and strip. Erichsen cupping test: ISO20482:2013[S]. London: British Standards Institution, 2013.
    [28] VANCLOOSTER K, LOMOV S, VERPOEST I. On the formability of multi-layered fabric composites[C]//17th International Conference on Composite Materials, ICCM-17. Edinburgh: ICCM, 2009, 17: 1-10.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  980
  • HTML全文浏览量:  381
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-07-31
  • 录用日期:  2022-08-21
  • 网络出版日期:  2022-09-07
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回