留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火石墨/铝复合材料热物理性能

张宇翔 郭宏 谢忠南 张习敏 黄国杰 解浩峰

张宇翔, 郭宏, 谢忠南, 等. 退火石墨/铝复合材料热物理性能[J]. 复合材料学报, 2023, 40(1): 455-463. doi: 10.13801/j.cnki.fhclxb.20220217.001
引用本文: 张宇翔, 郭宏, 谢忠南, 等. 退火石墨/铝复合材料热物理性能[J]. 复合材料学报, 2023, 40(1): 455-463. doi: 10.13801/j.cnki.fhclxb.20220217.001
ZHANG Yuxiang, GUO Hong, XIE Zhongnan, et al. Thermophysical properties of annealed graphite/6061 aluminum alloy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 455-463. doi: 10.13801/j.cnki.fhclxb.20220217.001
Citation: ZHANG Yuxiang, GUO Hong, XIE Zhongnan, et al. Thermophysical properties of annealed graphite/6061 aluminum alloy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 455-463. doi: 10.13801/j.cnki.fhclxb.20220217.001

退火石墨/铝复合材料热物理性能

doi: 10.13801/j.cnki.fhclxb.20220217.001
基金项目: 有研科技集团有限公司青年基金(12388);国家重点研发计划(2017YFB0406202)
详细信息
    通讯作者:

    郭宏,博士,教授级高级工程师,博士生导师,研究方向为金属基复合材料、热管理材料 E-mail: gh_grinm@126.com

  • 中图分类号: TB333

Thermophysical properties of annealed graphite/6061 aluminum alloy composites

Funds: Youth Fund of GRINM Group CO., LTD. (12388); National Key R & D Program of China (2017YFB0406202)
  • 摘要: 随着电子器件热流密度的不断增加,热聚集产生的热点问题严重影响电子器件性能和应用,急需开发高效热扩散材料。采用真空热压烧结工艺制备了以6061铝合金为基体材料,退火石墨(Annealed pyrolytic graphite,APG)为导热组元的高导热复合材料。探究了退火石墨表面Ti元素的改性处理对退火石墨/铝复合材料的微观结构、界面结合状况的影响规律,研究讨论了退火石墨/铝层厚比对复合材料整体热、力性能的影响。结果表明,经Ti元素改性处理的退火石墨材料与铝之间形成了干净、紧密结合厚度在400 nm的Al—Ti—C界面。当Al∶ APG∶ Al的层厚比为1∶3∶1时,复合材料面内方向热扩散系数达901 mm2·s−1,所承载最大抗弯强度为141 MPa,具有优异的综合性能。

     

  • 图  1  退火石墨X-Y表面形貌(插图:Z方向层叠) (a)和拉曼光谱分析 (b)

    Figure  1.  Morphologies of the surface (Inset: Z direction layering) (a) and Raman pattern (b) of the annealed graphite

    图  2  Ti改性退火石墨表面形貌和元素分布:(a) 石墨表面镀层(插图为高倍放大图);((b)、(c)) Ti、C元素EDS面分布

    Figure  2.  SEM images and elements distribution of Ti plating annealed graphite: (a) Graphite surface coatings (Inset: High-graphic); ((b), (c)) EDS surface distribution of Ti and carbon elements

    图  3  退火石墨XPS光谱分析:(a) 镀Ti处理前后全谱扫描;(b) 镀钛处理前后C1s精细谱;((c)~(e)) 镀Ti处理后石墨表面C1s、Ti2p、O1s精细谱

    Figure  3.  XPS spectra of annealed graphite: (a) Before and after Ti plating wide span; (b) C1s spectrum of annealed graphite before and after Ti plating; ((c)-(e)) C1s, Ti2p, O1s spectrum of Ti plating annealed graphite

    APG—Annealed pyrolytic graphite

    图  4  Ti改性退火石墨/铝复合材料界面形貌:(a) 实物图片;(b) 界面微观结构;(c) 界面处Al、C、Ti等元素线分布;((d)~(f)) 界面处Al、Ti、C元素分布

    Figure  4.  Interface morphologies of Ti plating annealed graphite/aluminum composite: (a) Physical drawing; (b) SEM images; (c) Al, Ti, C element distribution on line at the interface; ((d)-(f)) Al, Ti, C element distribution at the interface

    图  5  Ti改性退火石墨/铝复合材料界面微区XRD图谱

    Figure  5.  XRD patterns of Ti plating annealed graphite/aluminum composite material

    图  6  Ti改性退火石墨/铝复合材料平面热扩散系数(插图为退火石墨/铝复合材料实物图)

    Figure  6.  Thermal diffusivity of Ti plating annealed graphite/aluminum composites (Inset: Physical drawing of Ti plating annealed graphite/aluminum composite)

    图  7  Ti改性退火石墨/铝层状复合材料抗弯强度

    Figure  7.  Bending strength of Ti plating annealed graphite/aluminum composites

    图  8  Ti改性退火石墨/铝复合材料断口形貌:(a) X-Y方向;(b) Z方向

    Figure  8.  SEM images of the fracture of Ti plating annealed graphite/aluminum composites after mechanical test: (a) X-Y direction; (b) Z direction

    图  9  退火石墨/铝复合材料平面热扩散系数与文献石墨/铝复合材料数据的比较

    Figure  9.  Comparison of in-plane thermal diffusivity of annealed graphite/aluminum composites and other graphite/aluminum composites reported in recent literatures

  • [1] TOBERER E S, BARANOWSKI L L, DAMES C. Advances in thermal conductivity[J]. Annual Review of Materials Research,2012,42:179-209. doi: 10.1146/annurev-matsci-070511-155040
    [2] 张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势[J]. 中国材料进展, 2018, 37(12):994-1001, 1047.

    ZHANG Di, TAN Zhanqiu, XIONG Dingbang, et al. Application and prospect of metal matrix composites for thermal management: An overview[J]. Materials China,2018,37(12):994-1001, 1047(in Chinese).
    [3] 雷智博, 曹建光, 董丽宁, 等. 航天器热管理高导热材料应用研究[J]. 中国材料进展, 2018, 37(12):1039-1047.

    LEI Zhibo, CAO Jianguang, DONG Lining, et al. Study on application of high thermal conductivity materials in aerospace thermal management[J]. Materials China,2018,37(12):1039-1047(in Chinese).
    [4] CHAMROUNE N, MEREIB D, DELANGE F, et al. Effect of flake powder metallurgy on thermal conductivity of graphite flakes reinforced aluminum matrix composites[J]. Journal of Materials Science,2018,53:8180-8192. doi: 10.1007/s10853-018-2139-1
    [5] TAN Z, LI Z, FAN G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J]. Materials & Design,2013,47:160-166. doi: 10.1016/j.matdes.2012.11.061
    [6] MAIORANOA L P, MOLINA J M. Guiding heat in active thermal management: One-pot incorporation of interfacial nano-engineered aluminum/diamond composites into aluminum foams[J]. Composites Part A: Applied Science and Manufacturing,2020,133:105859. doi: 10.1016/j.compositesa.2020.105859
    [7] MIZUUCHI K, INOUE K, AGARI Y, et al. Processing of diamond-particle-dispersed silver-matrix composites in solid-liquid coexistent state by SPS and their thermal conductivity[J]. Composites Part B: Engineering,2012,43(3):1445-1452. doi: 10.1016/j.compositesb.2011.08.003
    [8] YI L F, YAMAMOTO T, ONDA T, et al. Orientation control of carbon fibers and enhanced thermal/mechanical properties of hot-extruded carbon fibers/aluminum composites[J]. Diamond and Related Materials,2021,116:108432. doi: 10.1016/j.diamond.2021.108432
    [9] ZHU C N, SU Y S, WANG X S, et al. Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing[J]. Composites Part B: Engineering,2021,215:108746. doi: 10.1016/j.compositesb.2021.108746
    [10] MIRANDA A T, BOLZONI L, BAREKAR N, et al. Processing, structure and thermal conductivity correlation in carbon fiber reinforced aluminum metal matrix composites[J]. Materials & Design,2018,156:329-339. doi: 10.1016/j.matdes.2018.06.059
    [11] WU G H, SU J, GOU H S, et al. Study on graphite fiber and Ti particle reinforced Al composite[J]. Journal of Materials Science,2009,44(18):4776-4780. doi: 10.1007/s10853-009-3718-y
    [12] JIANG D P, ZHU X M, YU J K. Enhanced thermal conductivity and bending strength of graphite flakes/aluminum composites via graphite surface modification[J]. Journal of Wuhan University of Technology,2020,53:9-15. doi: 10.1007/s11595-020-2220-x
    [13] PRIETO R, MOLINA J M, NARCISO J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications[J]. Scripta Materialia,2008,59(1):11-14. doi: 10.1016/j.scriptamat.2008.02.026
    [14] ZHOU C, JI G, CHEN Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications[J]. Materials & Design,2014,63:719-728. doi: 10.1016/j.matdes.2014.07.009
    [15] SHEN Z Y, JI G, SILVAIN J F. From 1D to 2D arrangements of graphite flakes in an aluminum matrix composite: Impact on thermal properties[J]. Scripta Materialia,2020,183:86-90. doi: 10.1016/j.scriptamat.2020.03.022
    [16] PENG X, YING H, SUN X, et al. High thermal conductivity and low thermal expansion coefficient of isotropic graphite-reinforced aluminum matrix composites prepared by in situ curing of silicon aerogel[J]. Journal of Materials Science: Materials in Electronics,2020,31:9250-9259. doi: 10.1007/s10854-020-03465-w
    [17] FAN R, HUANG Y, HAN X P, et al. High thermal conductivity and mechanical properties of Si@graphite/aluminum nitride/aluminum composites for high-efficiency thermal management[J]. Journal of Alloys and Compounds,2021,858:157630. doi: 10.1016/j.jallcom.2020.157630
    [18] SHEN X Y, HE X B, REN S B, et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. Journal of Alloys and Compounds,2012,529:134-139. doi: 10.1016/j.jallcom.2012.03.045
    [19] ZHANG Y, ZHANG H L, WU J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scripta Materialia,2011,65(12):1097-1100. doi: 10.1016/j.scriptamat.2011.09.028
    [20] ZHANG X Y, XU M, CAO S Z, et al. Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3[J]. Diamond and Related Materials,2020,104:107755. doi: 10.1016/j.diamond.2020.107755
    [21] INAGAKI M, KABURAGI Y, HISHIYAMA Y. Thermal management material: Graphite[J]. Advanced Engineering Materials,2014,16(5):494-506. doi: 10.1002/adem.201300418
    [22] XUE C, BAI H, TAO P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Materials & Design,2016,108:250-258. doi: 10.1016/j.matdes.2016.06.122
    [23] HUANG Y, OUYANG Q B, GUO Q, et al. Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications[J]. Materials & Design,2016,90:508-515. doi: 10.1016/j.matdes.2015.10.146
    [24] CHANG J, ZHANG Q, LIN Y F, et al. Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications[J]. Journal of Alloys and Compounds,2018,742:601-609. doi: 10.1016/j.jallcom.2018.01.332
    [25] KIBLER J J. High conductivity hydride material for thermal management: US, 005296310A[P]. 1994-04-22.
    [26] KHAN M F S, ALEXANDER A B. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials[J]. Solid State Communications,2012,152(15):1331-1340. doi: 10.1016/j.ssc.2012.04.034
    [27] ZHANG H M, HE X B, QU X H, et al. Microstructure and thermal properties of copper matrix composites reinforced with titanium-coated graphite fibers[J]. Rare Metals,2013,32(1):75-80. doi: 10.1007/s12598-013-0018-0
    [28] GUO B S, CHEN Y Q, WANG Z W, et al. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites[J]. Carbon,2020,159:201-212. doi: 10.1016/j.carbon.2019.12.038
    [29] PELLEG J, ASHKENAZI D, GANOR M. The influence of a third element on the interface reactions in metal-matrix composites (MMC): Al-graphite system[J]. Materials Science and Engineering: A,2000,281(1-2):239-247. doi: 10.1016/S0921-5093(99)00718-2
    [30] HUANG Y, SU Y, GUO X W, et al. Fabrication and thermal conductivity of copper coated graphite film/aluminum composites for effective thermal management[J]. Journal of Alloys and Compounds,2017,711:22-30. doi: 10.1016/j.jallcom.2017.03.233
    [31] HUANG Y, SU Y, LI S, et al. Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity[J]. Composites Part B: Engineering,2016,107:43-50. doi: 10.1016/j.compositesb.2016.09.051
    [32] LI W, LIU Y, WU G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon,2015,95:545-551. doi: 10.1016/j.carbon.2015.08.063
    [33] CHANG J, ZHANG Q, LIN Y F, et al. Carbon nanotubes grown on graphite films as effective interface enhancement for aluminum matrix laminated composite in thermal management application[J]. ACS Applied Materials & Interfaces,2018,10(44):38350-38358. doi: 10.1021/acsami.8b12691
    [34] RUBINKOVSKII N A, SHORNIKOV D P, TENISHEV A V, et al. Production of aluminum-graphite composite by spark plasma sintering[J]. Glass and Ceramics,2019,76:27-32. doi: 10.1007/s10717-019-00126-1
    [35] WANG C, SU Y, OUYANG Q, et al. Enhanced mechanical behavior and fabrication of graphite flakes covered by aligned graphene nanoplatelets reinforced 2A12 aluminum composites[J]. Vacuum,2021,188:110150. doi: 10.1016/j.vacuum.2021.110150
  • 加载中
图(9)
计量
  • 文章访问数:  1116
  • HTML全文浏览量:  534
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2022-01-10
  • 录用日期:  2022-02-06
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回