留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软@硬复合炭结构设计及其协同电化学储钾

陈亚鑫 蔡雅菱 曹振江 甘明涛 郭楠楠 鞠治成

陈亚鑫, 蔡雅菱, 曹振江, 等. 软@硬复合炭结构设计及其协同电化学储钾[J]. 复合材料学报, 2022, 40(0): 1-9
引用本文: 陈亚鑫, 蔡雅菱, 曹振江, 等. 软@硬复合炭结构设计及其协同电化学储钾[J]. 复合材料学报, 2022, 40(0): 1-9
Yaxin CHEN, Yaling CAI, Zhenjiang CAO, Mingtao GAN, Nannan GUO, Zhicheng JU. Hard–soft composite carbon anodes towards synergistic potassium storage[J]. Acta Materiae Compositae Sinica.
Citation: Yaxin CHEN, Yaling CAI, Zhenjiang CAO, Mingtao GAN, Nannan GUO, Zhicheng JU. Hard–soft composite carbon anodes towards synergistic potassium storage[J]. Acta Materiae Compositae Sinica.

软@硬复合炭结构设计及其协同电化学储钾

基金项目: 国家自然科学基金 (21975283),博士后科学基金(2020M681762),省部共建碳基能源资源化学与利用国家重点实验室开放课题(KFKT2021007),中国科学院炭材料重点实验室开放基金(KLCMKFJJ2010)
详细信息
    通讯作者:

    陈亚鑫,博士,讲师,硕士生导师,研究方向为炭材料及电化学储能  E-mail: chenyxcumt@163.com

  • 中图分类号: (TB332)

Hard–soft composite carbon anodes towards synergistic potassium storage

  • 摘要: 软@硬复合炭结构有助于协同改善炭负极材料的电化学储钾性能,但目前对不同复合结构对电化学储钾性能的影响规律仍缺乏系统研究。有鉴于此,将罗丹宁和嵌段共聚物F127作为硬炭前驱体,煤沥青热挥发份作为软炭前驱体,通过共炭化与气相沉积的协同使用,开发硬炭、软/硬三维杂化炭结构、软炭壳@硬炭核复合结构,并研究三种结构对电化学储钾性能的影响。软炭壳@硬炭核复合材料具有高可逆容量(0.05 A·g−1下容量为365 mAh·g−1),高循环稳定性(100圈循环后容量保持率为80%),高倍率性能(1 A·g−1下容量为177 mAh·g−1)的特征。硬炭核丰富的缺陷活性位点可提高复合材料储钾容量。软炭壳的涡轮碳结构可覆盖硬炭表面缺陷进,促进钾离子去溶剂化嵌入以改善循环稳定性。此外,高导电性软炭壳可改善电荷交换,进而提高复合材料的倍率性能并缓解电压滞后。得益于软炭与硬炭复合结构的协同储钾机制,软炭壳@硬炭核复合材料表现出明显优于硬炭的电化学储钾性能。

     

  • 图  1  硬炭(HC)(a,d)、软/硬三维杂化炭(SC/HC)(b,e)和软炭壳@硬炭核复合材料(SC@HC)(c,f)的SEM与TEM图像

    Figure  1.  SEM and TEM images of hard carbon (HC) (a,d), soft/hard hybrid carbon (SC/HC) (b,e) and soft carbon shell@hard carbon core composite (SC@HC) (c,f)

    图  2  HC (a)、SC/HC (b)、SC@HC (c,d)的HRTEM图像

    Figure  2.  HRTEM images of HC (a), SC/HC (b) and SC@HC (c,d)

    图  3  HC、SC/HC、SC@HC的XRD图谱 (a)、Raman图谱 (b) 和多峰拟合Raman图谱 (c)

    Figure  3.  XRD patterns (a), Raman spectra (b) andfitting of the Raman spectra (c) of HC, SC/HC, SC@HC

    图  4  HC (a)、SC/HC (b)和SC@HC (c)在0.1 mV·s−1下扫速下的循环伏安曲线与循环性能 (d);不同循环后容量统计 (e);倍率性能曲线 (f);HC (g)、SC/HC (h)和SC@HC (i) 在0.05、0.1、0.2、0.5、1 A·g−1电流密度下的容量电压曲线

    Figure  4.  CV curves of HC (a), SC/HC (b), SC@HC (c) at 0.1 mV·s−1. Cycling performance (d). Reversible capacities after different cycles (e). Rate performance at 0.05, 0.1, 0.2, 0.5 and 1 A·g−1, respectively (f). GCD curves of HC (g), SC/HC (h), SC@HC (i) at 0.1 A·g−1

    5  HC (a)与SC@HC (b) 在0.1至1 mV·s-1扫速下的循环伏安曲线;HC与SC@HC电极的氧化峰与扫速的拟合线性关系 (c);HC与SC@HC电极的容量电压微分曲线 (d);HC与SC@HC电极在放电 (e) 与充电 (f) 过程中的K+扩散系数。

    5.  CV curves of HC (a) and SC@HC (b) at the scan rate of 0.1 to 1 mV s-1. Anodic peak current dependence on the scan rate (c). The differential capacity versus voltage curves of the lithiation and delithiation curves of HC and SC@HC electrodes (d). K+ diffusion coefficient of HC and SC@HC electrodes during discharging (e) and charging (f).

    6  HC (a) 与SC@HC (b) 的电化学储钾机制示意图

    6.  Potassium storage mechanism in HC (a) and SC@HC (b)

  • [1] ZHANG W C, LU J, GUO Z P. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage[J]. Materials Today,2021,50:400-417. doi: 10.1016/j.mattod.2021.03.015
    [2] TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews,2021,121:1623-1669. doi: 10.1021/acs.chemrev.0c00767
    [3] CHEN Y X, XI B J, HUANG M, et al. Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022:2108621.
    [4] CAO B, ZHANG Q, LIU H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials,2018:1801149.
    [5] PENG D Q, CHEN Y X, MA H L, et al. Enhancing the cycling stability by tuning the chemical bonding between phosphorus and carbon nanotubes for potassium-ion battery anodes[J]. ACS AppliedMaterials & Interfaces,2020,12:37275-37284.
    [6] CAO B, LIU H, XU B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A,2016,4:6472-6478. doi: 10.1039/C6TA00950F
    [7] 钟旋, 简秀梅, 蒋恩臣, 等. 稻壳生物炭_醋酸酯淀粉-尿素复合膜的结构和性能[J]. 复合材料学报, 2019, 36(7):1746-1752.

    ZHONG X, JIAN X M, JIANG E C, et al. Structure and properties of rice husk biochar/acetate starch-urea starch composite films[J]. Acta Materiae Compositae Sinica,2019,36(7):1746-1752(in Chinese).
    [8] GAO F, ZANG Y H, WANG Y, et al. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Materials 2021, 36 (1): 34-48.
    [9] WU Y M, ZHAO H T, Wu Z G, et al. Rational design of carbon materials as anodes for potassium-ion batteries[J]. Energy Storage Materials,2021,34:483-507. doi: 10.1016/j.ensm.2020.10.015
    [10] 陈惠, 刘洪波, 夏笑虹, 等. 石墨/酚醛树脂复合材料双极板的制备与性能[J]. 复合材料学报, 2015, 32(3):744-755.

    CHEN H, LIU H, XIA X, et al. Preparation and properties of graphite/phenolic resin composite bipolar plate[J]. Acta Materiae Compositae Sinica,2015,32(3):744-755(in Chinese).
    [11] 桂阳, 曾靖宇, 范宝安, 等. 膨胀石墨/MnO2超级电容器电极材料中膨胀石墨的作用机制[J]. 复合材料学报, 2022, 39(1):256-263.

    GUI Y, ZENG J Y, FAN B A, et al. Action mechanism of expanded graphite in the composite of expanded graphite/MnO2 supercapacitor electrode materials[J]. Acta Materiae Compositae Sinica,2022,39(1):256-263(in Chinese).
    [12] WANG D K, ZHANG J P, DONG Y, et al. Progress on graphitic carbon materials for potassium- based energy storage[J]. New Carbon Materials 2021, 36 (3): 435-448.
    [13] RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: a comprehensive review[J]. Advanced Functional Materials,2020,30(12):1909486. doi: 10.1002/adfm.201909486
    [14] ALVIN S, CAHYADI H S, HWANG J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10(20):2000283. doi: 10.1002/aenm.202000283
    [15] ZENG S F, CHEN X J, XU R, et al. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms[J]. Nano Energy,2020,73:104807. doi: 10.1016/j.nanoen.2020.104807
    [16] WANG B, YUAN F, YU Q Y, et al. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries[J]. Energy Storage Materials,2021,38:329-337. doi: 10.1016/j.ensm.2021.03.021
    [17] LI Y, CHEN M H, LIU B, et al. Heteroatom doping: an effective way to boost sodium ion storage[J]. Advanced Energy Materials,2020,10(27):2000927. doi: 10.1002/aenm.202000927
    [18] QIAN Y, JIANG S, LI Y, et al. Understanding mesopore volume-enhanced extra-capacity: Optimizing mesoporous carbon for high-rate and long-life potassium-storage[J]. Energy Storage Materials 2020, 29: 341-349.
    [19] WANG B, PENG Y, YUAN F, et al. A comprehensive review of carbons anode for potassium-ion battery: fast kinetic, structure stability and electrochemical[J]. Journal of Power Sources,2021,484:229244. doi: 10.1016/j.jpowsour.2020.229244
    [20] 曹连胜, 赵超, 金欣, 等. 基于离子选择性迁移策略的动力/储能电池隔膜的研究进展[J]. 复合材料学报, 2021, 38(7):2025-2037.

    CAO L S, ZHAO C, JIN X, et al. Research progress of power/energy storage battery separator based on selective ion migration strategy[J]. Acta Materiae Compositae Sinica,2021,38(7):2025-2037(in Chinese).
    [21] 刘振源, 刘烈凯, 金鑫, 等. 沥青基软碳材料对硅负极锂离子电池性能的影响沥青基软碳材料对硅负极锂离子电池性能的影响[J]. 复合材料学报, 2019, 36(6):1568-1573.

    LIU Z, LIU L, JIN X, et al. Effect of asphalt-decomposed soft carbon on the performance of Si-based anode material in lithium ion battery[J]. Acta Materiae Compositae Sinica,2019,36(6):1568-1573(in Chinese).
    [22] WU X, CHEN Y L, XING Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials,2019,9(21):1900343. doi: 10.1002/aenm.201900343
    [23] JIAN Z L, HWANG S, LI Z F, et al. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries[J]. Advanced Functional Materials,2017,27(26):1700324. doi: 10.1002/adfm.201700324
    [24] XIE F, XU Z, JENSEN A C S, et al. Hard–soft carbon composite anodes with synergistic sodium storage performance[J]. Advanced Functional Materials,2019,29(24):1901072. doi: 10.1002/adfm.201901072
    [25] 党斐, 赵炜, 陈曦, 等. 表面改性对活性炭孔结构及热电转换性能的影响[J]. 复合材料学, 2017, 34(5):1069-1074.

    DANG F, ZHAO W, CHEN X, et al. Effects of surface modification on the porous structure and thermal-electric energy conversion of activated carbon[J]. Acta Materiae Compositae Sinica,2017,34(5):1069-1074(in Chinese).
    [26] DONG Y, ZHANG S, DU X, et al. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling[J]. Advanced Functional Materials,2019,29(24):1901127. doi: 10.1002/adfm.201901127
    [27] 韦会鸽, 彭紫芳, 陈安利, 等. 生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能[J]. 复合材料学报, 2021, 39(0):1-9.

    WEI H G, PENG Z F, CHEN A L, et al. Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites[J]. Acta Materiae Compositae Sinica,2021,39(0):1-9(in Chinese).
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 录用日期:  2022-01-22
  • 修回日期:  2022-01-16
  • 网络出版日期:  2022-03-03

目录

    /

    返回文章
    返回