留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声震监测的钢纤维/混凝土裂纹扩展规律及失稳前兆

刘成禹 陈成海 张向向 曹洋兵 何锡阳

刘成禹, 陈成海, 张向向, 等. 基于声震监测的钢纤维/混凝土裂纹扩展规律及失稳前兆[J]. 复合材料学报, 2023, 40(4): 2240-2250. doi: 10.13801/j.cnki.fhclxb.20220725.001
引用本文: 刘成禹, 陈成海, 张向向, 等. 基于声震监测的钢纤维/混凝土裂纹扩展规律及失稳前兆[J]. 复合材料学报, 2023, 40(4): 2240-2250. doi: 10.13801/j.cnki.fhclxb.20220725.001
LIU Chengyu, CHEN Chenghai, ZHANG Xiangxiang, et al. Crack propagation law and failure precursor of steel fiber reinforced concrete based on acoustic emission and microseism monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2240-2250. doi: 10.13801/j.cnki.fhclxb.20220725.001
Citation: LIU Chengyu, CHEN Chenghai, ZHANG Xiangxiang, et al. Crack propagation law and failure precursor of steel fiber reinforced concrete based on acoustic emission and microseism monitoring[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2240-2250. doi: 10.13801/j.cnki.fhclxb.20220725.001

基于声震监测的钢纤维/混凝土裂纹扩展规律及失稳前兆

doi: 10.13801/j.cnki.fhclxb.20220725.001
基金项目: 国家自然科学基金(41272300);中铁隧道局集团有限公司科技创新重点项目(隧研合:2018-53);福建省自然科学基金(2020 J05133)
详细信息
    通讯作者:

    张向向,博士,讲师,硕士生导师,研究方向为隧道与地下工程、页岩气压裂等方面 E-mail: xxzhang@fzu.edu.cn

  • 中图分类号: TU528

Crack propagation law and failure precursor of steel fiber reinforced concrete based on acoustic emission and microseism monitoring

Funds: National Natural Science Foundation of China (41272300); Major Projects of Scientific and Technological Innovation of CRTG (2018-53); Natural Science Foundation of Fujian Province of China (2020J05133)
  • 摘要: 对不同龄期、不同钢纤维掺量的钢纤维/混凝土(SFRC)单轴压缩过程中声发射(AE)和微震(MS)信号进行分析,探究SFRC的声震信号特征及裂纹扩展规律。结果表明:(1) SFRC加载过程中裂纹扩展可分为裂纹压密(I)、裂纹稳定发育(II)、裂纹急速扩展(III)和峰后破坏(IV) 4个阶段;(2) 随龄期增加,第I、第II阶段中AE、MS的能率、振率及微观裂纹和细、宏观裂纹的整体扩展速率均逐渐降低;第III、第IV阶段中AE、MS的能率、振率及微观裂纹及细、宏观裂纹的整体扩展速率均逐渐增大;(3) 随钢纤维掺量增加,除第I阶段外,其余3个阶段的AE能率和振率、微观裂纹整体扩展速率均逐渐增大;各个阶段的MS能率和振率逐渐减小,MS能量突增点的时间比逐渐增大,表明细、宏观裂纹整体扩展速率降低,破坏时间延迟;(4) SFRC失稳前,AE、MS的能率和振率、MS能量占比均出现明显陡增,可作为SFRC的失稳前兆指标。

     

  • 图  1  带屏蔽箱的加载系统及声发射(AE)和微震(MS)监测装置

    Figure  1.  Loading system with shielded box, acoustic emission (AE) and microseismic (MS) monitoring devices

    图  2  不同龄期SFRC应力及AE能量历时曲线

    Figure  2.  Duration curves of AE energy and stress for SFRC at different curing ages

    aJ—Attojoules, 1 aJ = 10–18 J

    图  3  不同龄期SFRC应力及MS能量历时曲线

    Figure  3.  Duration curves of MS energy and stress for SFRC at different curing ages

    图  4  不同掺量SFRC试样应力和AE能量历时曲线

    Figure  4.  Duration curves of AE energy and stress for SFRC with different steel fiber volume fractions

    图  5  不同掺量SFRC试样应力和MS能量历时曲线

    Figure  5.  Duration curves of MS energy and stress for SFRC with different steel fiber volume fractions

    图  6  SFRC试样MS突增点的时间比与钢纤维掺量关系

    Figure  6.  Relationship between MS surge time ratio and steel fiber volume fraction for SFRC

    p—Mortar

    图  7  SFRC试样归一化AE能率及振率与钢纤维掺量关系

    Figure  7.  Relationship between normalized AE energy rate, counts rate and steel fiber volume fraction for SFRC

    图  8  SFRC试样归一化MS能率及振率与钢纤维掺量关系

    Figure  8.  Relationship between normalized MS energy rate, counts rate and steel fiber volume fraction for SFRC

    图  9  龄期7天、掺量0.5vol%SFRC试样的失稳前兆特征

    Figure  9.  Precursor index of SFRC with 0.5vol% steel fiber volume fraction at 7 days

    表  1  端钩型钢纤维参数

    Table  1.   Parameters of hooked steel fiber

    Length/mmAspect ratioTensile strength/MPaElastic modulus E/GPa
    35601100200
    下载: 导出CSV

    表  2  试样配合比

    Table  2.   Mix proportion of specimen

    Steel fiber volume fraction/vol%Water/(kg·m–3)Cement/(kg·m–3)Sand/(kg·m–3)Gravel/(kg·m–3)Steel fiber/(kg·m–3)
    Mortar(p) 210.0 411.8 1778.2 0.0 0.0
    0 210.0 411.8 800.2 978.0 0.0
    0.5 218.0 427.5 801.8 940.7 39.3
    1.0 226.0 443.1 813.1 915.3 78.5
    1.5 234.0 458.8 805.1 866.2 117.8
    2.0 242.0 474.5 806.6 828.9 157.0
    下载: 导出CSV

    表  3  不同龄期SFRC试样AE能率及振率归一化值

    Table  3.   Normalized AE energy rate and count rate of SFRC at different curing ages

    Loading stageAE energy rateAE count rate
    3 d7 d28 d3 d7 d28 d
    I 1.00 0.69 0.65 1.00 0.79 0.74
    II 1.00 0.45 0.35 1.00 0.59 0.50
    III 1.00 4.65 5.90 1.00 3.22 5.83
    IV 1.00 17.33 30.99 1.00 5.94 8.04
    下载: 导出CSV

    表  4  不同龄期SFRC试样MS能率及振率归一化值

    Table  4.   Normalized MS energy rate and count rate of SFRC at different curing ages

    Loading stageMS energy rateMS count rate
    3 d7 d28 d3 d7 d28 d
    I1.000.870.551.000.950.92
    II1.000.690.501.000.340.31
    III1.002.403.791.003.625.34
    IV1.001.883.191.005.858.71
    下载: 导出CSV

    表  5  SFRC试样不同特征指标变化的临界值

    Table  5.   Critical values of different characteristic indexes for SFRC

    Age-volume fractionAE critical value $ {\kappa _{{{\rm{un}}} }} $MS critical value $ {\xi _{{\rm{un}}}} $MS energy proportion $ {\varsigma _{{\rm{un}}}} $
    Energy rateCount rateEnergy rateCount rate
    3 d-0.5vol% 1.08
    7 d-0.5vol% 1.33 1.22 2.70 1.53 1.03
    28 d-0.5vol% 1.56 1.62 2.31 1.69 1.07
    28 d-mortar 2.16 1.99 15.65 3.61 1.49
    28 d-0vol% 1.62 1.96 3.89 1.77 1.24
    28 d-1.0vol% 2.35 3.32 4.66 5.04 1.14
    28 d-1.5vol% 1.53 1.31 3.44 2.52 1.08
    28 d-2.0vol% 2.30 2.72 3.44 5.08 1.21
    下载: 导出CSV
  • [1] 张秀芝, 毕梦迪, 刘同军, 等. 钢纤维混凝土中纤维分布特性影响因素研究进展[J]. 硅酸盐学报, 2021, 49(8):1732-1742. doi: 10.14062/j.issn.0454-5648.20200760

    ZHANG Xiuzhi, BI Mengdi, LIU Tongjun, et al. Research progress in factors affecting fiber distribution in steel fiber concrete[J]. Journal of the Chinese Ceramic Society,2021,49(8):1732-1742(in Chinese). doi: 10.14062/j.issn.0454-5648.20200760
    [2] 赵人达, 赵成功, 原元, 等. UHPC中钢纤维的应用研究进展[J]. 中国公路学报, 2021, 34(8):1-22. doi: 10.3969/j.issn.1001-7372.2021.08.002

    ZHAO Renda, ZHAO Chenggong, YUAN Yuan, et al. Research progress on application of steel fiber in ultra high performance concrete[J]. China Journal of Highway and Transport,2021,34(8):1-22(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.08.002
    [3] 刘善军, 张艳博, 吴立新, 等. 混凝土破裂与渗水过程的红外辐射特征[J]. 岩石力学与工程学报, 2009, 28(1):53-58. doi: 10.3321/j.issn:1000-6915.2009.01.007

    LIU Shanjun, ZHANG Yanbo, WU Lixin, et al. Infrared radiation feature of concrete during fracturing and water seepage process[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(1):53-58(in Chinese). doi: 10.3321/j.issn:1000-6915.2009.01.007
    [4] 刘贞堂, 李学龙, 李忠辉, 等. 单轴压缩下混凝土孔洞内壁表面电位特征[J]. 煤炭学报, 2014, 39(S2):372-377.

    LIU Zhentang, LI Xuelong, LI Zhonghui, et al. Electric potential of the hole wall of concrete under uniaxial compression[J]. Journal of China Coal Society,2014,39(S2):372-377(in Chinese).
    [5] 赖于树, 熊燕, 程龙飞. 混凝土受载试验全过程声发射特性研究与应用[J]. 建筑材料学报, 2015, 18(3):380-386. doi: 10.3969/j.issn.1007-9629.2015.03.005

    LAI Yushu, XIONG Yan, CHENG Longfei. Study of characteristics of acoustic emission during entire loading tests of concrete and its application[J]. Journal of Building Materials,2015,18(3):380-386(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.03.005
    [6] RUSCH H. Physical problems in testing of concrete[J]. Zement-Kalk-Gips (Wiesbaden), 1959 , 12 (1): 1-9.
    [7] SOULIOTI D, BARKOULA N M, PAIPETIS A, et al. Acoustic emission behavior of steel fibre reinforced concrete under bending[J]. Construction and Building Materials,2009,23(12):3532-3536. doi: 10.1016/j.conbuildmat.2009.06.042
    [8] AGGELIS D G. Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications,2011,38(3):153-157. doi: 10.1016/j.mechrescom.2011.03.007
    [9] 王金贵, 张苏. 水泥材料静爆拉伸破裂微震显现特征[J]. 土木工程学报, 2017, 50(11):18-23, 56. doi: 10.15951/j.tmgcxb.2017.11.003

    WANG Jingui, ZHANG Su. Characteristics of micro-seismic signals during static cracking process of cement mortar[J]. China Civil Engineering Journal,2017,50(11):18-23, 56(in Chinese). doi: 10.15951/j.tmgcxb.2017.11.003
    [10] 马克, 庄端阳, 唐春安, 等. 基于微震监测的大岗山水电站高拱坝廊道裂缝形成原因研究[J]. 岩石力学与工程学报, 2018, 37(7):1608-1617. doi: 10.13722/j.cnki.jrme.2018.0148

    MA Ke, ZHUANG Duanyang, TANG Chun'an, et al. Study on formation causes of gallery cracks in Dagangshan high arch dam based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(7):1608-1617(in Chinese). doi: 10.13722/j.cnki.jrme.2018.0148
    [11] CARPINTERI A, LACIDOGNA G, MANUELLO A, et al. Mechanical and electromagnetic emissions related to stress-induced cracks[J]. Experimental Techniques,2012,36(3):53-64. doi: 10.1111/j.1747-1567.2011.00709.x
    [12] JIANG R, DAI F, LIU Y, et al. Frequency characteristics of acoustic emissions induced by crack propagation in rock tensile fracture[J]. Rock Mechanics and Rock Engineering,2021,54(4):2053-2065. doi: 10.1007/s00603-020-02351-5
    [13] WANG Z, NING J, REN H. Frequency characteristics of the released stress wave by propagating cracks in brittle materials[J]. Theoretical and Applied Fracture Mechanics,2018,96:72-82. doi: 10.1016/j.tafmec.2018.04.004
    [14] SCHIAVI A, NICCOLINI G, TARIZZO P, et al. Acoustic emissions at high and low frequencies during compression tests in brittle materials[J]. Strain,2011,47(s2):105-110. doi: 10.1111/j.1475-1305.2010.00745.x
    [15] 张艳博, 梁鹏, 田宝柱, 等. 花岗岩灾变声发射信号多参量耦合分析及主破裂前兆特征试验研究[J]. 岩石力学与工程学报, 2016, 35(11):2248-2258. doi: 10.13722/j.cnki.jrme.2016.0251

    ZHANG Yanbo, LIANG Peng, TIAN Baozhu, et al. Multi parameter coupling analysis of acoustic emission signals of granite disaster and the precursor characteristics of the main rupture[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(11):2248-2258(in Chinese). doi: 10.13722/j.cnki.jrme.2016.0251
    [16] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2010.

    Construction Standard (Recommended) of the People's Republic of China. Standard test methods for fiber reinforced concrete: CECS 13—2009[S]. Beijing: China Planning Press, 2010(in Chinese).
    [17] 朱旻, 陈湘生, 王雪涛. 盾构隧道衬砌结构性能演化分析与思考[J]. 工程力学, 2022, 39(3):33-50.

    ZHU Min, CHEN Xiangsheng, WANG Xuetao. Analysis and thinking on structural performance evolution of shield tunnel lining[J]. Engineering Mechanics,2022,39(3):33-50(in Chinese).
    [18] 刘新荣, 祝云华, 李晓红, 等. 隧道钢纤维喷射混凝土单层衬砌试验研究[J]. 岩土力学, 2009, 30(8):2319-2323. doi: 10.3969/j.issn.1000-7598.2009.08.022

    LIU Xinrong, ZHU Yunhua, LI Xiaohong, et al. Experimental research on single-layer tunnel lining of steel fiber shotcrete[J]. Rock and Soil Mechanics,2009,30(8):2319-2323(in Chinese). doi: 10.3969/j.issn.1000-7598.2009.08.022
    [19] 余睿, 范定强, 孙美娟, 等. 钢纤维掺量及其3D空间结构对超高性能混凝土性能的影响[J]. 硅酸盐学报, 2021, 49(11):2313-2321.

    YU Rui, FAN Dingqiang, SUN Meijuan, et al. Effects of steel fibre content and 3D network on performance of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society,2021,49(11):2313-2321(in Chinese).
    [20] 交通部公路科学研究所. 公路水泥混凝土路面施工技术规范: JTGF 30—2003[S]. 北京: 人民交通出版社, 2003.

    Ministry of Communications Highway Scientific Research Institute. Technical specification for construction of highway cement concrete pavement: JTGF 30—2003[S]. Beijing: China Communications Press, 2003(in Chinese).
    [21] 中华人民共和国行业标准编写组. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Professional Standards Compilation Group of People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2010[S]. Beijing: China Architecture and Building Press, 2011(in Chinese).
    [22] 蔡向荣, 徐世烺. UHTCC单轴受压韧性的试验测定与评价指标[J]. 工程力学, 2010, 27(5):218-224.

    CAI Xiangrong, XU Shilang. Experimental measurement and evaluation indexes of toughness properties for UHTCC under uniaxial compression[J]. Engineering Mechanics,2010,27(5):218-224(in Chinese).
    [23] 郭庆华, 郤保平, 李志伟, 等. 混凝土声发射信号频率特征与强度参数的相关性试验研究[J]. 中南大学学报(自然科学版), 2015, 46(4):1482-1488. doi: 10.11817/j.issn.1672-7207.2015.04.040

    GUO Qinghua, XI Baoping, LI Zhiwei, et al. Experimental research on relationship between frequency characteristics of acoustic emission and strength parameter in concrete[J]. Journal of Central South University (Science and Technology),2015,46(4):1482-1488(in Chinese). doi: 10.11817/j.issn.1672-7207.2015.04.040
    [24] 刘鹏, 余志武, 陈令坤. 养护龄期对水泥混凝土性能和微观结构的影响[J]. 建筑材料学报, 2012, 15(5):717-723. doi: 10.3969/j.issn.1007-9629.2012.05.026

    LIU Peng, YU Zhiwu, CHEN Lingkun. Influence of curing age on properties and microstructure of concrete[J]. Journal of Building Materials,2012,15(5):717-723(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.05.026
    [25] 张虎. 自密实钢纤维轻骨料混凝土的早期性能与损伤分析[J]. 材料导报, 2017, 31(20):124-128. doi: 10.11896/j.issn.1005-023X.2017.020.026

    ZHANG Hu. Early capability and damage analysis of self-compacting, steel-fiber-reinforced light weight aggregate concrete[J]. Materials Reports,2017,31(20):124-128(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.020.026
    [26] 吴胜兴, 王岩, 沈德建. 混凝土及其组成材料轴拉损伤过程声发射特性试验研究[J]. 土木工程学报, 2009, 42(7):21-27. doi: 10.3321/j.issn:1000-131X.2009.07.004

    WU Shengxing, WANG Yan, SHEN Dejian. Experimental study on acoustic emission characteristics of the damage process of concrete and its components under uniaxial tension[J]. China Civil Engineering Journal,2009,42(7):21-27(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.07.004
    [27] 李冬, 金浏, 杜修力, 等. 混凝土I-型细观断裂模型及其在材料层次尺寸效应中的应用[J]. 土木工程学报, 2020, 53(2):48-61.

    LI Dong, JIN Liu, DU Xiuli, et al. Concrete mode-I mesoscale fracture model and its application in analysis of size effect at material level[J]. China Civil Engineering Journal,2020,53(2):48-61(in Chinese).
    [28] 李庆斌. 混凝土断裂损伤力学[M]. 北京: 科学出版社, 2017: 50-66.

    LI Qingbin. Fracture damage mechanics of concrete[M]. Beijing: Science Press, 2017: 50-66(in Chinese).
    [29] 管俊峰, 李庆斌, 吴智敏, 等. 现场浇筑大坝混凝土断裂参数与等效成熟度关系研究[J]. 水利学报, 2015, 46(8):73-81.

    GUAN Junfeng, LI Qingbin, WU Zhimin, et al. Relationship between fracture parameters with an equivalent maturity of site-casting dam concrete[J]. Journal of Hydraulic Engineering,2015,46(8):73-81(in Chinese).
    [30] 吴林妹, 史才军, 张祖华, 等. 钢纤维对超高性能混凝土干燥收缩的影响[J]. 材料导报, 2017, 31(23):58-65. doi: 10.11896/j.issn.1005-023X.2017.023.007

    WU Linmei, SHI Caijun, ZHANG Zuhua, et al. Effects of steel fiber on drying shrinkage of ultra high performance concrete[J]. Materials Reports,2017,31(23):58-65(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.007
    [31] 张廷毅, 高丹盈, 王宝庭. 三点弯曲下钢纤维高强混凝土张开位移[J]. 水利学报, 2010, 41(10):1193-1200. doi: 10.13243/j.cnki.slxb.2010.10.010

    ZHANG Tingyi, GAO Danying, WANG Baoting. Opening displacement of steel fiber reinforced high strength concrete under three-point bending[J]. Journal of Hydraulic Engineering,2010,41(10):1193-1200(in Chinese). doi: 10.13243/j.cnki.slxb.2010.10.010
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  282
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-06-24
  • 录用日期:  2022-07-12
  • 网络出版日期:  2022-07-25
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回