Repair performance of damaged aircraft metal structure with one-sided composite patch
-
摘要:
航空金属结构在服役过程中容易产生开孔、裂纹和腐蚀等损伤,传统的机械修理方式(铆接、螺接)因效率低、增重大、需对母板进行制孔等无法满足修理要求。随着先进复合材料和胶接技术的不断成熟,金属构件损伤复合材料贴补修复技术因增重小、可设计性强、无二次损伤、便于原位操作等优点在航空维修等领域中具有广泛的应用前景。本文使用试验研究、数值模拟和理论分析等手段,研究了三种贴补修复工艺(湿铺法、预浸料法、预固化法)、复合材料补片厚度、补片长度与修复界面形貌、胶接特性、失效形式和极限载荷之间的对应关系。研究发现:湿铺法的修复性能最好,是预固化法的3.3倍、预浸料法的1.3倍;随着复合材料补片厚度的增加,修补结构的极限失效载荷先增大后减小,最后趋向稳定,失效形式经历了从补片分层崩裂、纤维拉伸断裂和胶层损伤的混合失效到胶层剪切破坏的演化过程,当补片厚度为7层约1.05mm厚度时修复效果最好;随着复合材料补片长度的增大,修补结构的极限失效载荷先增大后线性减小,原因是胶接面积增大带来增益性能的同时,固化内应力诱发单面弯矩对结构的减损影响也逐渐增加且超过面积增大带来的增益影响,当补片长度为80mm时修复效果最好;本文中建立的连续损伤模型全面模拟了胶层、复合材料层内和层间的损伤起始与演化情况,并得到了试验的充分验证。 左:不同CFRP补片长度的极限载荷和失效形式;右:CFRP补片的应变场分布 A型失效模式:CFRP补片的分层和崩裂 Abstract: For the repair structures of aircraft metal components with one-sided CFRP patches, the tensile tests on repair specimens with different repair processes (wet lay-up, prepreg and pre-curing methods) and CFRP patch parameters were carried out. The ultimate load, failure mode and interface of the specimens were observed. The three-dimensional (3D) finite element (FE) model has been established. Based on 3D Hashin failure criteria, the damage initiation and evolution in CFRP were simulated. The damages of the adhesive layer and delamination of CFRP were simulated with cohesive zone model. The FE model was validated by experimental and theoretical analysis. The results show that the three repair processes have different interface morphology and failure modes. The wet lay-up method has the best repair effect, 3.3 times of the pre-curing method and 1.3 times of the prepreg method. With the increase of patch thickness, the ultimate load first increases, then decreases, and finally tends to be stable. The failure mode gradually evolves from patch delamination, mixed failure of fiber breakage and adhesive layer damage to adhesive layer shear failure. The best patch thickness is 7 layers, about 1.05mm in thickness. With the increase of patch length, the ultimate load first increases and then decreases linearly. The damage of the adhesive layer starts from the center and both ends of the joint and evolves to the middle region. The best patch length is 80 mm. The results reported herein could provide useful guidance for the application of aviation maintenance engineering.-
Key words:
- composite patch /
- aviation metal /
- adhesive bonded structure /
- finite element analysis /
- repair effect
-
表 1 TC4钛合金板的材料参数
Table 1. Mechanical properties of TC4 titanium alloy plate
Property Value E/GPa 110 ρ/(10−9 t·mm−3) 4.51 v12 0.34 Notes: E, ρ and v12 – Elastic modulus, density and Poisson’s ratio, respectively. 表 2 SY-24 C胶膜的材料参数
Table 2. Mechanical properties of SY-24 C adhesive film
Property Value E/MPa 5750 G/MPa 1920 σ/MPa 451.6 τ/MPa 225.8 GC n/(N·mm−1) 0.48 GC s, GC t/(N·mm−1) 0.64 Notes: E, G – Elastic modulus in tension and shear; σ, τ – Failure strengths in tension and shear; GC n– Toughness in tension; GC s, GC t– Toughness in shear. 表 3 T300/7901碳纤维增强树脂(CFRP)复合材料层合板的材料参数
Table 3. Mechanical properties of T300/7901 carbon fiber Reinforced polymer (CFRP) composite laminate
Property Value Property Value E11/GPa 125 Yc/MPa 280 E22, E33/GPa 11.3 S/MPa 120 G12, G13/GPa 5.43 Kn/(N·mm−3) 100000 G23/GPa 3.98 Ks/(N·mm−3) 100000 v12, v13 0.3 σ/MPa 28.5 v23 0.42 τ/MPa 35.5 Xt/MPa 2000 GC n/(N·mm−1) 0.34 Xc/MPa 1100 GC s/(N·mm−1) 0.38 Yt/MPa 80 GC t/(N·mm−1) 0.38 Notes: Eii (i =1, 2, 3) – Young’s modulus in the i direction; Gij (i =1, 2, 3) – Shear modulus in the i-j plane; vij (i =1, 2, 3) – Poisson’s ratio in the i-j plane; Xt, Xc, and Yt, Yc – Tensile and compressive strengths in the 1 and 2 directions; S – Shear strength; Kn, Ks – Stiffness components in tension and shear; σ, τ – Failure strengths in tension and shear. -
[1] 宣善勇. 复合材料修理飞机金属结构技术的应用进展[J]. 化工新型材料, 2020, 48(11):227-229. doi: 10.19817/j.cnki.issn1006-3536.2020.11.050Xuan Shanyong. Process on boned repair of aircraft metallic structure applied by composite[J]. New Chemical Materials,2020,48(11):227-229(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.11.050 [2] ABUSREA M, ARAKAWA K. Improvement of an adhesive joint constructed from carbon fiber-reinforced plastic and dry carbon fiber laminates[J]. Composite Part B,2016,97:368-373. doi: 10.1016/j.compositesb.2016.05.005 [3] 邓雅琼, 陈洋, 栗娜, 等. 三维编织复合材料与金属胶接结构的力学性能及优化[J]. 复合材料学报, 2018, 35(10):2760-2767. doi: 10.13801/j.cnki.fhclxb.20171219.001DENG Yaqiong, CHEN Yang, LI Na, et al. Mechanical properties and optimization adhesive structure of three-dimensional braided composites and metal[J]. Acta Materiae Compositae Sinica,2018,35(10):2760-2767(in Chinese). doi: 10.13801/j.cnki.fhclxb.20171219.001 [4] KUMAR, P, SHINDE, P. S, BHOYAR, G. Fracture Toughness and shear strength of the bonded interface between an aluminium alloy skin and a FRP patch[J]. Inst. Eng. India Ser. C,2019,100:779-789. doi: 10.1007/s40032-018-0467-1 [5] YANG C Q, WANG X L, JIAO Y J, et al. Linear strain sensing performance of continuous high strength carbon fiber reinforced polymer composites[J]. Composite Part B,2016,102:86-93. doi: 10.1016/j.compositesb.2016.07.013 [6] PURIMPAT S, SHAHRAM A. Effect of fiber angle orientation on a laminated composite single-lap adhesive joint[J]. Advanced Composite Materials,2013,22(3):139-149. doi: 10.1080/09243046.2013.782805 [7] NURPRASETIO I P. Evaluation of bonding strength and fracture criterion for aluminum alloy-woven composite adhesive joint based on cohesive zone model[J]. International Journal of Adhesion and Adhesives,2018,85:193-201. doi: 10.1016/j.ijadhadh.2018.06.011 [8] LIAO L, TOSHIYUKI S, HUANG C. Numerical analysis on load-bearing capacity and damage of double scarf adhesive joints subjected to combined loadings of tension and bending[J]. International Journal of Adhesion and Adhesives,2014,53:65-71. doi: 10.1016/j.ijadhadh.2014.01.010 [9] CHOUDHURY M R, DEBNATH K. Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites[J]. International Journal of Adhesion and Adhesives,2020,99:102557.1-102557.10. [10] ZHAO L B, WANG Y N, QIN T L, et al. A new material model for 2 d FE analysis of adhesively bonded composite joints[J]. Materials Science,2014,20(4):468-473. [11] RIBEIRO T E A, CAMPILHO R D S G, DA S L F, et al. Damage analysis of composite aluminium adhesively bonded single-lap joints[J]. Composite Structures,2016,13:25-33. [12] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131. doi: 10.13801/j.cnki.fhclxb.20190308.001MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded CFRP laminates[J]. Acta Materiae Compositae Sinica,2020,37(1):121-131(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190308.001 [13] 苗学周, 李成, 铁瑛, 等. 补片形状和尺寸对复合材料胶接修补的影响[J]. 机械工程学报, 2014, 50(20):63-69. doi: 10.3901/JME.2014.20.063MIAO Xuezhou, LI Cheng, TIE Ying, et al. Influence of patch shape and size on adhesively bonded composite repair[J]. Journal of Mechanical Engineering,2014,50(20):63-69(in Chinese). doi: 10.3901/JME.2014.20.063 [14] 孙运刚, 宣善勇, 贺旺. 复合材料湿法修理含裂纹铝板疲劳特性分析[J]. 化工新型材料, 2021, 049(11):198-201. doi: 10.19817/j.cnki.issn1006-3536.2021.11.041Sun Yungang, Xuan Shanyong, He Wang. Fatigue characteristics analysis of cracked Al plate repaired by composite wet bonding[J]. New Chemical Materials,2021,049(11):198-201(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.11.041 [15] 王跃, 穆志韬, 刘治国. 复合材料单面修补板裂纹尖端J积分的解析预测模型[J]. 复合材料学报, 2018, 35(2):332-339. doi: 10.13801/j.cnki.fhclxb.20170327.002WANG Yue, MU Zhitao, LIU Zhiguo. Analytical model for prediction of J-internal of single-side-patched plates[J]. Acta Materiae Compositae Sinica,2018,35(2):332-339(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170327.002 [16] SATTHUMNUWONG P, ROUSSEAU J. Effect of fiber angle orientation on a laminated composite single-lap adhesive joint[J]. Advanced Composite Materials,2013,22(3):139-149. doi: 10.1080/09243046.2013.782805 [17] SUN L G, LI C, TIE Y, et al. Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads[J]. Int. J. Adhesion Adhes.,2019,95:102402. doi: 10.1016/j.ijadhadh.2019.102402 [18] ZOE, BACHEVA, et al. Effect of the surface morphology of SLM printed aluminium on the interfacial fracture toughness of metal-composite hybrid joints[J]. International Journal of Adhesion and Adhesives,2021,105:102779. doi: 10.1016/j.ijadhadh.2020.102779 [19] Duong CN, Yu J. An analytical estimate of thermal effects in a composite bonded repair: plane stress analysis[J]. Int J Solids Struct,2002,39(3):1003-1014. [20] 刘真航. SY-24中温固化胶接体系[J]. 中国胶粘剂, 2002, 11(1):5. doi: 10.3969/j.issn.1004-2849.2002.01.001LIU Zhenhang. SY-24 Moderate temperature cured adhesive system[J]. China Adhesives,2002,11(1):5(in Chinese). doi: 10.3969/j.issn.1004-2849.2002.01.001 [21] HOU Y L, TIE Y, et al. Low-velocity impact behaviors of repaired CFRP laminates[J]. Composites Part B,2019,163:669-680. doi: 10.1016/j.compositesb.2018.12.153 [22] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447-2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of tension properties: GB/T 1447-2005[S]. Beijing: China Standards Press, 2005 (in Chinese). [23] HASHIN Z. Failure criteria for unidirectional fiber composite[J]. J. Appl. Mech,1980,47(2):329-334. doi: 10.1115/1.3153664 [24] GUO S, WEN L. Numerical analysis and experiment of sandwich T-joint structure reinforced by composite fasteners[J]. Composites B,2020,199:1082-1088. [25] PINHO S. T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composite with emphasis on fibre kinking[J]. Composites A,2006,37(1):63-73. doi: 10.1016/j.compositesa.2005.04.016 [26] GUO W, XUE P, YANG J. Nonlinear progressive damage model for composite laminates used for low velocity impact[J]. Applied Mathematics and Mechanics,2013,34(9):1145-1154. doi: 10.1007/s10483-013-1733-7 -

计量
- 文章访问数: 160
- HTML全文浏览量: 142
- 被引次数: 0