留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内掺硅烷对硫铝酸盐水泥砂浆力学和吸水性能的影响

薛善彬 王丹 马金元 白如飞 郭哲名 高小建

薛善彬, 王丹, 马金元, 等. 内掺硅烷对硫铝酸盐水泥砂浆力学和吸水性能的影响[J]. 复合材料学报, 2024, 43(0): 1-12.
引用本文: 薛善彬, 王丹, 马金元, 等. 内掺硅烷对硫铝酸盐水泥砂浆力学和吸水性能的影响[J]. 复合材料学报, 2024, 43(0): 1-12.
XUE Shanbin, WANG Dan, MA Jinyuan, et al. Effects of incorporated silane on mechanical and water absorption properties of sulphoaluminate cement mortar[J]. Acta Materiae Compositae Sinica.
Citation: XUE Shanbin, WANG Dan, MA Jinyuan, et al. Effects of incorporated silane on mechanical and water absorption properties of sulphoaluminate cement mortar[J]. Acta Materiae Compositae Sinica.

内掺硅烷对硫铝酸盐水泥砂浆力学和吸水性能的影响

基金项目: 国家自然科学基金(U2106220;52008222);青岛市科技惠民示范专项(24-1-8-cspz-9-nsh)
详细信息
    通讯作者:

    薛善彬,博士,副教授,博士生导师,研究方向为混凝土耐久性 E-mail: xueshanbin@qut.edu.cn

  • 中图分类号: TU528

Effects of incorporated silane on mechanical and water absorption properties of sulphoaluminate cement mortar

Funds: National Natural Science Foundation of China (U2106220; 52008222); Demonstration Project of Benefiting People with Science and Technology of Qingdao, China (24-1-8-cspz-9-nsh)
  • 摘要: 通过内掺硅烷对硫铝酸盐水泥(Sulphoaluminate cement,SAC)砂浆进行疏水改性,以提升其在海洋等严酷环境中的耐久性。首先,分析了内掺不同量硅烷SAC净浆的凝结时间和水化放热行为,系统研究了硅烷掺量对不同龄期SAC砂浆力学和吸水性能的影响规律。之后,基于压汞法、扫描电镜、X射线衍射法和材料表面水分接触角等测试结果探讨了内掺硅烷SAC砂浆力学与吸水性能的演化机理。最后,研究了不同硅烷掺量SAC砂浆与不同含水饱和度旧砂浆基体间界面剪切强度的演化规律。结果表明:掺入不同量硅烷的SAC净浆仍具备速凝特征,其快速放热阶段均集中于加水拌合后的2 h内。内掺水泥质量0.5%~2%的硅烷会对SAC砂浆的抗压强度产生一定的负面影响,但会略微提升其28 d龄期时的抗折强度。1~28 d龄期内,内掺硅烷SAC砂浆试件的毛细吸水系数相较未掺试件降低了71.0%~94.2%。内掺硅烷未造成SAC砂浆孔隙率的显著增长,但使直径大于50 nm的毛细孔体积分数升高以及水化产物含量有所增加。SAC砂浆中硅烷掺量的增加导致其表面水分接触角增大,并进一步降低了其毛细吸水性能。3 d龄期时,SAC砂浆与基体间的界面剪切强度随硅烷掺量的增加而升高,随基体饱和度的增加而降低。与不同饱和度基体粘结后,内掺硅烷SAC砂浆仍具有较低的吸水性能。

     

  • 图  1  界面剪切强度测试

    Figure  1.  Interface shear strength test

    图  2  不同硅烷掺量对SAC净浆的凝结时间的影响

    Figure  2.  Effects of different silane content on the setting time of sulphoaluminate cement (SAC) paste

    图  3  不同硅烷掺量对SAC净浆水化放热的影响

    Figure  3.  Effects of different silane content on the hydration heat of SAC paste

    图  4  SAC砂浆抗压与抗折强度随硅烷掺量和龄期的演化规律

    Figure  4.  The evolution of the compressive and flexural strength of SAC mortar with silane content and ages

    图  5  不同硅烷掺量SAC砂浆试件的吸水数据

    Figure  5.  Water absorption data of SAC mortar with different silane contents

    图  6  不同硅烷掺量SAC砂浆1 d和3 d龄期孔隙率

    Figure  6.  Porosity of SAC mortar with different silane contents at the age of 1 d and 3 d

    图  7  不同硅烷掺量SAC砂浆1 d和3 d龄期的孔径分布曲线

    Figure  7.  Pore size distribution curves of SAC mortar with different silane contents at the age of 1 d and 3 d

    图  8  不同硅烷掺量SAC砂浆1 d和3 d龄期的孔隙体积分数

    Figure  8.  Pore volume fraction of SAC mortar with different silane contents at the age of 1 d and 3 d

    图  9  3 d龄期时0%和2%硅烷掺量SAC砂浆微观形貌

    Figure  9.  Microscopic topography of SAC mortar with 0% and 100% silane content at the age of 3 d

    图  10  1 d和3 d龄期时不同硅烷掺量SAC净浆试样的XRD谱

    Figure  10.  XRD patterns of SAC paste with different silane contents at 1 d and 3 d ages

    图  11  不同硅烷掺量对SAC砂浆表面水分接触角的影响

    Figure  11.  Effects of different silane content on the water contact angle of SAC mortar

    图  12  不同硅烷掺量SAC砂浆接触角余弦值与毛细吸水系数间的关系

    Figure  12.  Relationships between the cosθ of the contact angle and the C of SAC mortar with different silane contents

    图  13  不同硅烷掺量SAC砂浆与基体间界面剪切强度

    Figure  13.  Interface shear strength between SAC mortar with different silane contents and substrates with different saturation

    图  14  与基体粘结前后SAC砂浆的毛细吸水性能

    Figure  14.  Capillary water absorption properties of SAC mortar before and after bonding to substrates

    表  1  SAC的化学成分

    Table  1.   Chemical composition of SAC

    ComponentMgOAl2O3SiO2SO3CaOFe2O3Others
    Mass fraction/wt%2.6716.8710.4812.9052.402.861.82
    Note: SAC refers to the sulphoaluminate cement.
    下载: 导出CSV
  • [1] CUI K, LIANG K, CHANG J, et al. Investigation of the macro performance, mechanism, and durability of multiscale steel fiber reinforced low-carbon ecological UHPC[J]. Construction and Building Materials, 2022, 327: 126921. doi: 10.1016/j.conbuildmat.2022.126921
    [2] 李恒, 王正君, 杜英欣. 纳米SiO2对硫铝酸盐混凝土负温力学性能与微观结构的影响[J]. 复合材料学报, 1-12 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240620.001.

    LI Heng, WANG Zhengfei, DU Yingxin. Effect of nano-SiO2 on negative temperature mechanical properties and microstructure of sulfoaluminate concrete[J/OL]. Acta Materiae Compositae Sinica, 1-12 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240620.001 (in Chinese).
    [3] WANG Y, LI J, UEDA T, et al. Meso-scale mechanical deterioration of mortar subjected to freeze thaw cycles and sodium chloride attack[J]. Cement and Concrete Composites, 2021, 117: 103906. doi: 10.1016/j.cemconcomp.2020.103906
    [4] 童良玉, 刘清风. 考虑时变孔隙结构的非饱和混凝土扩散性能预测模型[J]. 硅酸盐学报, 2023, 51(8): 1950-1961.

    TONG Liangyu, LIU Qingfeng. Prediction model for diffusivity of unsaturated concrete by considering time-varying pore structure[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 1950-1961(in Chinese).
    [5] 胡曙光. 先进水泥基复合材料[M]. 北京: 科学出版社, 2009.

    HU Shuguang. Advanced cement-based composite materials. Beijing Science and Technology Press, 2009(in Chinese).
    [6] 李克非, 景炜, 杨睿. 混凝土表面硅烷浸渍及其长期防护效果研究进展[J]. 硅酸盐学报, 2019, 47(8): 1181-1190.

    LI Kefei, JING Wei, YANG Rui. Review on silane impregnation of concrete surface and its long-term hydrophobic performance[J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1181-1190(in Chinese).
    [7] PAN X, SHI Z, SHI C, et al. A review on surface treatment for concrete – part 2: performance[J]. Construction and Building Materials, 2017, 133: 81-90. doi: 10.1016/j.conbuildmat.2016.11.128
    [8] JAHANDARI S, TAO Z, ALIM M A, et al. Integral waterproof concrete: a comprehensive review[J]. Journal of Building Engineering, 2023, 78: 107718. doi: 10.1016/j.jobe.2023.107718
    [9] CHEN B, SHAO H, LI B, et al. Influence of silane on hydration characteristics and mechanical properties of cement paste[J]. Cement and Concrete Composites, 2020, 113: 103743. doi: 10.1016/j.cemconcomp.2020.103743
    [10] HUSILLOS-RODRÍGUEZ N, MARTÍNEZ-RAMÍREZ S, ZARZUELA R, et al. Effect of alkoxysilane on early age hydration in portland cement pastes[J]. Journal of Building Engineering, 2022, 50: 104127. doi: 10.1016/j.jobe.2022.104127
    [11] CHEN H, GUO Z, HOU P, et al. The influence of surface treatment on the transport properties of hardened calcium sulfoaluminate cement-based materials[J]. Cement and Concrete Composites, 2020, 114: 103784. doi: 10.1016/j.cemconcomp.2020.103784
    [12] LIANG C, ZHAO P, LIU L, et al. Fabrication of bulk hydrophobic cement-based materials with ultra-high impermeability[J]. Journal of Building Engineering, 2023, 63: 105492. doi: 10.1016/j.jobe.2022.105492
    [13] 鲍玖文, 李树国, 张鹏, 等. 再生粗骨料硅烷浸渍处理对混凝土介质传输性能的影响[J]. 复合材料学报, 2020, 37(10): 2602-2609.

    BAO Jiuwen, LI Shuguo, ZHANG Peng, et al. Effect of recycled coarse aggregate after strengthening by silane impregnation on mass transport of concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2602-2609(in Chinese).
    [14] 田杰夫, 杨贞军, 杨国君, 等. 硅烷-纳米SiO2复合表面改性钢纤维超高性能混凝土参数优化及其力学性能[J/OL]. 复合材料学报, 1-10 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240705.001

    TIAN Jiefu, YANG Zhenjun, YANG Guojun, et al. Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete [J/OL]. Acta Materiae Compositae Sinica, 1-10 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240705.001 (in Chinese).
    [15] 郭旗. 水泥基修补材料与既有基体粘结及水分传输性能试验研究[D]. 青岛理工大学, 2023.

    GUO Qi. Experimental Study on bonding and water transport properties of cement-based repair materials-existing substrates [D]. Qingdao University of Technology, 2023(in Chinese).
    [16] HUANG H, SONG X, SONG X, et al. A migrating and reactive polycarboxylate superplasticizer with coupled functions of new/old concrete interfacial agent and water reducer[J]. Cement and Concrete Research, 2023, 172: 107218. doi: 10.1016/j.cemconres.2023.107218
    [17] BEUSHAUSEN H, HÖHLIG B, TALOTTI M. The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ[J]. Cement and Concrete Research, 2017, 92: 84-91. doi: 10.1016/j.cemconres.2016.11.017
    [18] ZHANG Y, ZHU P, LIAO Z, et al. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material[J]. Construction and Building Materials, 2020, 235: 117431. doi: 10.1016/j.conbuildmat.2019.117431
    [19] 孙华阳. 负温路面快速修补用硫铝酸盐水泥ECC性能研究[D]. 哈尔滨工业大学, 2022.

    SUN Huayang. Study on performance of sulphoaluminate cement ECC for quick pavement Repair at Negative Temperature [D]. Harbin Institute of Technology, 2022(in Chinese).
    [20] 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of the People’s Republic of China. water requirement for standard consistency of cement, setting time, and stability test methods: GB/T 1346—2011 [S]. Beijing: China Standards Press, 2011(in Chinese).
    [21] 中国国家标准化管理委员会. 水泥胶砂强度检验方法: GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People’s Republic of China. Method for testing the strength of cement mortar: GB/T 17671-2021 [S]. Beijing: China Standards Press, 2021(in Chinese).
    [22] DONATTI D A, VOLLET D R. Effects of the Water Quantity on the Solventless TEOS Hydrolysis Under Ultrasound Stimulation[J]. Journal of Sol-Gel Science and Technology, 2000, 17(1): 19-24. doi: 10.1023/A:1008748702656
    [23] SHE Y, CHEN Y, LI L, et al. Understanding the generation and evolution of hydrophobicity of silane modified fly ash/slag based geopolymers[J]. Cement and Concrete Composites, 2023, 142: 105206. doi: 10.1016/j.cemconcomp.2023.105206
    [24] KUMAR R, BHATTACHARJEE B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155-164. doi: 10.1016/S0008-8846(02)00942-0
    [25] 景炜. 水泥基材料硅烷浸渍老化机理研究[D]. 清华大学, 2019.

    JING Wei. Study on aging mechanism of silane-impregnated cement-based materials [D]. Tsinghua University, 2019(in Chinese).
    [26] LI F, LIU L, LIU K, et al. Investigation on waterproof mechanism and micro-structure of cement mortar incorporated with silicane[J]. Construction and Building Materials, 2020, 239: 117865. doi: 10.1016/j.conbuildmat.2019.117865
    [27] CAO Y, WANG Q, ZHOU W, et al. Fabrication of hierarchical superhydrophobic structures by silane enriched with nanomaterials for enhancing permeability and freeze-thaw resistance[J]. Construction and Building Materials, 2024, 426: 136016. doi: 10.1016/j.conbuildmat.2024.136016
    [28] 刘杰, 黄飞, 杨渝南, 等. 基于毛管浸润技术的岩石孔隙率无损测试[J]. 岩土力学, 2018, 39(3): 1137-1144.

    LIU Jie, HUANG Fei, YANG Yu-nan, et al. Nondestructive testing of porosity of rock based on capillary infiltration technique[J]. Rock and Soil Mechanics, 2018, 39(3): 1137-1144(in Chinese).
    [29] BENAVENTE D, PLA C, CUETO N, et al. Predicting water permeability in sedimentary rocks from capillary imbibition and pore structure[J]. Engineering Geology, 2015, 195: 301-311. doi: 10.1016/j.enggeo.2015.06.003
    [30] CAI J, PERFECT E, CHENG C, et al. Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures[J]. Langmuir, 2014, 30(18): 5142-5151. doi: 10.1021/la5007204
    [31] 宋辰, 姜超, 顾祥林. 碳化对混凝土微孔特征和吸水性能的影响[J]. 同济大学学报(自然科学版), 2024, 52(4): 567-573. doi: 10.11908/j.issn.0253-374x.23129

    SONG Chen, JIANG Chao, GU Xianglin. Effects of carbonation on microscopic pore characteristics and water absorption performance of concrete[J]. Journal of Tongji University(Natural Science), 2024, 52(4): 567-573(in Chinese). doi: 10.11908/j.issn.0253-374x.23129
    [32] ZHANG C, ZHANG S, YU J, et al. Water absorption behavior of hydrophobized concrete using silane emulsion as admixture[J]. Cement and Concrete Research, 2022, 154: 106738. doi: 10.1016/j.cemconres.2022.106738
    [33] 喻建伟, 张朝阳, 孔祥明, 等. 内掺硅烷乳液憎水剂对混凝土性能的影响[J]. 硅酸盐学报, 2021, 49(2): 372-380.

    YU Jianwei, ZHANG Chaoyang, KONG Xiangming. Influence of Silane Emulsion Hydrophobic Agent on Concrete Properties[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 372-380(in Chinese).
  • 加载中
计量
  • 文章访问数:  20
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 修回日期:  2024-10-14
  • 录用日期:  2024-10-19
  • 网络出版日期:  2024-11-02

目录

    /

    返回文章
    返回