Effects of incorporated silane on mechanical and water absorption properties of sulphoaluminate cement mortar
-
摘要: 通过内掺硅烷对硫铝酸盐水泥(Sulphoaluminate cement,SAC)砂浆进行疏水改性,以提升其在海洋等严酷环境中的耐久性。首先,分析了内掺不同量硅烷SAC净浆的凝结时间和水化放热行为,系统研究了硅烷掺量对不同龄期SAC砂浆力学和吸水性能的影响规律。之后,基于压汞法、扫描电镜、X射线衍射法和材料表面水分接触角等测试结果探讨了内掺硅烷SAC砂浆力学与吸水性能的演化机理。最后,研究了不同硅烷掺量SAC砂浆与不同含水饱和度旧砂浆基体间界面剪切强度的演化规律。结果表明:掺入不同量硅烷的SAC净浆仍具备速凝特征,其快速放热阶段均集中于加水拌合后的2 h内。内掺水泥质量0.5%~2%的硅烷会对SAC砂浆的抗压强度产生一定的负面影响,但会略微提升其28 d龄期时的抗折强度。1~28 d龄期内,内掺硅烷SAC砂浆试件的毛细吸水系数相较未掺试件降低了71.0%~94.2%。内掺硅烷未造成SAC砂浆孔隙率的显著增长,但使直径大于50 nm的毛细孔体积分数升高以及水化产物含量有所增加。SAC砂浆中硅烷掺量的增加导致其表面水分接触角增大,并进一步降低了其毛细吸水性能。3 d龄期时,SAC砂浆与基体间的界面剪切强度随硅烷掺量的增加而升高,随基体饱和度的增加而降低。与不同饱和度基体粘结后,内掺硅烷SAC砂浆仍具有较低的吸水性能。Abstract: In this paper, the hydrophobic modification of sulphoaluminate cement (SAC) mortar was carried out by adding silane to improve its durability in harsh environments such as the ocean. Firstly, the setting time and hydration exothermic behavior of SAC paste with different saturation of silane were analyzed, and the influence of silane content on the mechanical and water absorption properties of SAC mortar at different ages was systematically investigated. The mechanical and water absorption evolution mechanism of silane-doped SAC mortar was further discussed based on the results of Mercury Intrusion Porosimetry, scanning electron microscope, X-ray diffraction and surface moisture contact angle tests. Finally, the evolution law of interface shear strength between SAC mortar with different silane contents and old mortar substrates with different water saturation was investigated. The results show that the SAC pastes with different silane contents still possess quick-setting characteristics, and its rapid exothermic stage is concentrated within 2 hours after water mixing. The incorporation of silane (0.5%~2% of cement in mass) has a certain negative effect on the compressive strength of SAC mortar, but can improve its flexural strength at the age of 28 d. The capillary water absorption coefficients of SAC mortar specimens incorporated with silane are reduced by 71.0%~94.2% compared with specimens without silane at the age of 1~28 d. The incorporation of silane does not cause a significant increase in the porosity of SAC mortar, but increases the volume fraction of capillary pores with a diameter greater than 50 nm and the content of hydration products. The increase of silane content in SAC mortar leads to the increase of its surface water contact angle and further reduces its capillary water absorption properties. At the age of 3d, the interface shear strength between SAC mortar and substrates increases with the increase of silane content, and decreases with the increase of the saturation of substrates. The SAC mortar with silane still have low water absorption properties after bonding to substrates with different saturation.
-
表 1 SAC的化学成分
Table 1. Chemical composition of SAC
Component MgO Al2O3 SiO2 SO3 CaO Fe2O3 Others Mass fraction/wt% 2.67 16.87 10.48 12.90 52.40 2.86 1.82 Note: SAC refers to the sulphoaluminate cement. -
[1] CUI K, LIANG K, CHANG J, et al. Investigation of the macro performance, mechanism, and durability of multiscale steel fiber reinforced low-carbon ecological UHPC[J]. Construction and Building Materials, 2022, 327: 126921. doi: 10.1016/j.conbuildmat.2022.126921 [2] 李恒, 王正君, 杜英欣. 纳米SiO2对硫铝酸盐混凝土负温力学性能与微观结构的影响[J]. 复合材料学报, 1-12 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240620.001.LI Heng, WANG Zhengfei, DU Yingxin. Effect of nano-SiO2 on negative temperature mechanical properties and microstructure of sulfoaluminate concrete[J/OL]. Acta Materiae Compositae Sinica, 1-12 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240620.001 (in Chinese). [3] WANG Y, LI J, UEDA T, et al. Meso-scale mechanical deterioration of mortar subjected to freeze thaw cycles and sodium chloride attack[J]. Cement and Concrete Composites, 2021, 117: 103906. doi: 10.1016/j.cemconcomp.2020.103906 [4] 童良玉, 刘清风. 考虑时变孔隙结构的非饱和混凝土扩散性能预测模型[J]. 硅酸盐学报, 2023, 51(8): 1950-1961.TONG Liangyu, LIU Qingfeng. Prediction model for diffusivity of unsaturated concrete by considering time-varying pore structure[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 1950-1961(in Chinese). [5] 胡曙光. 先进水泥基复合材料[M]. 北京: 科学出版社, 2009.HU Shuguang. Advanced cement-based composite materials. Beijing Science and Technology Press, 2009(in Chinese). [6] 李克非, 景炜, 杨睿. 混凝土表面硅烷浸渍及其长期防护效果研究进展[J]. 硅酸盐学报, 2019, 47(8): 1181-1190.LI Kefei, JING Wei, YANG Rui. Review on silane impregnation of concrete surface and its long-term hydrophobic performance[J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1181-1190(in Chinese). [7] PAN X, SHI Z, SHI C, et al. A review on surface treatment for concrete – part 2: performance[J]. Construction and Building Materials, 2017, 133: 81-90. doi: 10.1016/j.conbuildmat.2016.11.128 [8] JAHANDARI S, TAO Z, ALIM M A, et al. Integral waterproof concrete: a comprehensive review[J]. Journal of Building Engineering, 2023, 78: 107718. doi: 10.1016/j.jobe.2023.107718 [9] CHEN B, SHAO H, LI B, et al. Influence of silane on hydration characteristics and mechanical properties of cement paste[J]. Cement and Concrete Composites, 2020, 113: 103743. doi: 10.1016/j.cemconcomp.2020.103743 [10] HUSILLOS-RODRÍGUEZ N, MARTÍNEZ-RAMÍREZ S, ZARZUELA R, et al. Effect of alkoxysilane on early age hydration in portland cement pastes[J]. Journal of Building Engineering, 2022, 50: 104127. doi: 10.1016/j.jobe.2022.104127 [11] CHEN H, GUO Z, HOU P, et al. The influence of surface treatment on the transport properties of hardened calcium sulfoaluminate cement-based materials[J]. Cement and Concrete Composites, 2020, 114: 103784. doi: 10.1016/j.cemconcomp.2020.103784 [12] LIANG C, ZHAO P, LIU L, et al. Fabrication of bulk hydrophobic cement-based materials with ultra-high impermeability[J]. Journal of Building Engineering, 2023, 63: 105492. doi: 10.1016/j.jobe.2022.105492 [13] 鲍玖文, 李树国, 张鹏, 等. 再生粗骨料硅烷浸渍处理对混凝土介质传输性能的影响[J]. 复合材料学报, 2020, 37(10): 2602-2609.BAO Jiuwen, LI Shuguo, ZHANG Peng, et al. Effect of recycled coarse aggregate after strengthening by silane impregnation on mass transport of concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2602-2609(in Chinese). [14] 田杰夫, 杨贞军, 杨国君, 等. 硅烷-纳米SiO2复合表面改性钢纤维超高性能混凝土参数优化及其力学性能[J/OL]. 复合材料学报, 1-10 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240705.001TIAN Jiefu, YANG Zhenjun, YANG Guojun, et al. Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete [J/OL]. Acta Materiae Compositae Sinica, 1-10 [2024-10-25]. https://doi.org/10.13801/j.cnki.fhclxb.20240705.001 (in Chinese). [15] 郭旗. 水泥基修补材料与既有基体粘结及水分传输性能试验研究[D]. 青岛理工大学, 2023.GUO Qi. Experimental Study on bonding and water transport properties of cement-based repair materials-existing substrates [D]. Qingdao University of Technology, 2023(in Chinese). [16] HUANG H, SONG X, SONG X, et al. A migrating and reactive polycarboxylate superplasticizer with coupled functions of new/old concrete interfacial agent and water reducer[J]. Cement and Concrete Research, 2023, 172: 107218. doi: 10.1016/j.cemconres.2023.107218 [17] BEUSHAUSEN H, HÖHLIG B, TALOTTI M. The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ[J]. Cement and Concrete Research, 2017, 92: 84-91. doi: 10.1016/j.cemconres.2016.11.017 [18] ZHANG Y, ZHU P, LIAO Z, et al. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material[J]. Construction and Building Materials, 2020, 235: 117431. doi: 10.1016/j.conbuildmat.2019.117431 [19] 孙华阳. 负温路面快速修补用硫铝酸盐水泥ECC性能研究[D]. 哈尔滨工业大学, 2022.SUN Huayang. Study on performance of sulphoaluminate cement ECC for quick pavement Repair at Negative Temperature [D]. Harbin Institute of Technology, 2022(in Chinese). [20] 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2011.Standardization Administration of the People’s Republic of China. water requirement for standard consistency of cement, setting time, and stability test methods: GB/T 1346—2011 [S]. Beijing: China Standards Press, 2011(in Chinese). [21] 中国国家标准化管理委员会. 水泥胶砂强度检验方法: GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.Standardization Administration of the People’s Republic of China. Method for testing the strength of cement mortar: GB/T 17671-2021 [S]. Beijing: China Standards Press, 2021(in Chinese). [22] DONATTI D A, VOLLET D R. Effects of the Water Quantity on the Solventless TEOS Hydrolysis Under Ultrasound Stimulation[J]. Journal of Sol-Gel Science and Technology, 2000, 17(1): 19-24. doi: 10.1023/A:1008748702656 [23] SHE Y, CHEN Y, LI L, et al. Understanding the generation and evolution of hydrophobicity of silane modified fly ash/slag based geopolymers[J]. Cement and Concrete Composites, 2023, 142: 105206. doi: 10.1016/j.cemconcomp.2023.105206 [24] KUMAR R, BHATTACHARJEE B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155-164. doi: 10.1016/S0008-8846(02)00942-0 [25] 景炜. 水泥基材料硅烷浸渍老化机理研究[D]. 清华大学, 2019.JING Wei. Study on aging mechanism of silane-impregnated cement-based materials [D]. Tsinghua University, 2019(in Chinese). [26] LI F, LIU L, LIU K, et al. Investigation on waterproof mechanism and micro-structure of cement mortar incorporated with silicane[J]. Construction and Building Materials, 2020, 239: 117865. doi: 10.1016/j.conbuildmat.2019.117865 [27] CAO Y, WANG Q, ZHOU W, et al. Fabrication of hierarchical superhydrophobic structures by silane enriched with nanomaterials for enhancing permeability and freeze-thaw resistance[J]. Construction and Building Materials, 2024, 426: 136016. doi: 10.1016/j.conbuildmat.2024.136016 [28] 刘杰, 黄飞, 杨渝南, 等. 基于毛管浸润技术的岩石孔隙率无损测试[J]. 岩土力学, 2018, 39(3): 1137-1144.LIU Jie, HUANG Fei, YANG Yu-nan, et al. Nondestructive testing of porosity of rock based on capillary infiltration technique[J]. Rock and Soil Mechanics, 2018, 39(3): 1137-1144(in Chinese). [29] BENAVENTE D, PLA C, CUETO N, et al. Predicting water permeability in sedimentary rocks from capillary imbibition and pore structure[J]. Engineering Geology, 2015, 195: 301-311. doi: 10.1016/j.enggeo.2015.06.003 [30] CAI J, PERFECT E, CHENG C, et al. Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures[J]. Langmuir, 2014, 30(18): 5142-5151. doi: 10.1021/la5007204 [31] 宋辰, 姜超, 顾祥林. 碳化对混凝土微孔特征和吸水性能的影响[J]. 同济大学学报(自然科学版), 2024, 52(4): 567-573. doi: 10.11908/j.issn.0253-374x.23129SONG Chen, JIANG Chao, GU Xianglin. Effects of carbonation on microscopic pore characteristics and water absorption performance of concrete[J]. Journal of Tongji University(Natural Science), 2024, 52(4): 567-573(in Chinese). doi: 10.11908/j.issn.0253-374x.23129 [32] ZHANG C, ZHANG S, YU J, et al. Water absorption behavior of hydrophobized concrete using silane emulsion as admixture[J]. Cement and Concrete Research, 2022, 154: 106738. doi: 10.1016/j.cemconres.2022.106738 [33] 喻建伟, 张朝阳, 孔祥明, 等. 内掺硅烷乳液憎水剂对混凝土性能的影响[J]. 硅酸盐学报, 2021, 49(2): 372-380.YU Jianwei, ZHANG Chaoyang, KONG Xiangming. Influence of Silane Emulsion Hydrophobic Agent on Concrete Properties[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 372-380(in Chinese).
点击查看大图
计量
- 文章访问数: 20
- HTML全文浏览量: 12
- 被引次数: 0