留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响

朱培 张晓民 俞洁 杨爽 陈天星 贺攀阳

朱培, 张晓民, 俞洁, 等. 粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 朱培, 张晓民, 俞洁, 等. 粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响[J]. 复合材料学报, 2022, 40(0): 1-14
Pei ZHU, Xiaomin ZHANG, Jie YV, Shuang YANG, Tianxing CHEN, Panyang HE. Impact of Fe content of coal fly ashmagnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites[J]. Acta Materiae Compositae Sinica.
Citation: Pei ZHU, Xiaomin ZHANG, Jie YV, Shuang YANG, Tianxing CHEN, Panyang HE. Impact of Fe content of coal fly ashmagnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites[J]. Acta Materiae Compositae Sinica.

粉煤灰磁珠Fe含量和研磨粒径对Fe3C@C-CNTs复合材料结构和吸波性能的影响

基金项目: 咸阳市科技局重点研发计划(2021ZDYF-GY-0034);酒钢集团科技研发项目资助项目(4500618489)
详细信息
    通讯作者:

    张晓民,博士,教授,研究方向为矿物材料、固废资源化利用 E-mail:xmzhang@xauat.edu.cn

  • 中图分类号: TB333

Impact of Fe content of coal fly ashmagnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites

  • 摘要: 以粉煤灰磁珠作为原料、采用化学气相沉积(CVD)方法可制备出纳米结构铁/碳复合材料,呈现良好的吸波性能,但存在磁珠性质不均一、结构调控难等问题。本文采用摇床方法对磁珠进行分选,并进行研磨处理,考察了磁珠Fe含量和研磨粒径对CVD生成产物的影响。结果表明,富铁磁珠CVD生成产物为碳包覆磁性颗粒与碳纳米管组成的复合材料(Fe3C@C-CNTs),该复合材料呈现多孔团簇球形结构。磁珠Fe含量(wt%)增加,复合材料的相对碳沉积量(C/Fe值)减小,石墨化程度降低(ID/IG值升高),导致材料阻抗匹配值升高,吸波性能获得提升。磁珠Fe含量为71.43%时,复合材料有效吸收频带达到4.5 GHz,反射损耗(RLmin)达到−16.1 dB。对磁珠进行研磨后,CVD生成产物的C/Fe值不变,但碳沉积速率增大,ID/IG值升高,导致材料阻抗匹配明显提高,吸波性能大幅度提升。研磨粒径为18.23 μm时,复合材料有效吸收频带达到4.8 GHz,RLmin可达到−34.7 dB。分析表明,复合材料优异的吸波性能得益于CNTs和Fe3C@C对电磁波的协同吸收作用;独特的多孔团簇结构增强了电磁波在材料中多次反射,促进了界面极化。

     

  • 图  1  磁珠(MSs)与纳米铁/碳-碳纳米管组成的复合材料(Fe3C@C-CNTs)复合材料的XRD谱图

    Figure  1.  XRD patterns of magnetospheres (MSs) and nano-structured iron/carbon-carbon nanotubes composites (Fe3C@C-CNTs) composites

    图  2  Fe3C@C-CNTs复合材料的SEM和TEM图

    Figure  2.  SEM and TEM images of Fe3C@C-CNTs composites

    图  3  摇床分选产物磁珠剖面SEM图(a-c);摇床分选产物制备的Fe3C@C-CNTs复合材料SEM图(d-f)

    Figure  3.  SEM images of magnetospheress section of specific gravity product (a-c), SEM images of Fe3C@C-CNTs composites prepared by shaker separation products(d-f)

    图  4  摇床分选产物制备的Fe3C@C-CNTs复合材料拉曼光谱

    Figure  4.  Raman spectrum of Fe3C@C-CNTs composite prepared by shaker separation products

    图  5  摇床分选产物制备的Fe3C@C-CNTs复合材料介电常数和磁导率

    Figure  5.  The permittivity and permeability of Fe3C@C-CNTs composite prepared by shaker separation products

    图  6  摇床分选产物制备Fe3C@C-CNTs复合材料的(a)衰减常数,(b)阻抗匹配

    Figure  6.  (a) attenuation constant, (b) impedance matching of Fe3C@C-CNTs composite prepared by shaker separation products

    图  7  摇床分选产物制备的Fe3C@C-CNTs复合材料反射损耗图,(a)样品S1-1,(b)样品S1-2,(c-d)样品S1-3

    Figure  7.  Reflective loss diagram of Fe3C@C-CNTs composites by shaker separation products, ( a ) samples S1-1, ( b ) samplesS1-2, ( c-d )S1-3

    图  8  研磨产物1和2(a-b);研磨产物制备的Fe3C@C-CNTs复合材料SEM图(c-d)

    Figure  8.  SEM images of grinding products 1 and 2(a-b), SEM images of Fe3C@C-CNTs composites prepared by grinding products (c-d)

    图  9  研磨产物制备的Fe3C@C-CNTs复合材料拉曼光谱

    Figure  9.  Raman spectrum analysis results of Fe3C@C-CNTs composites prepared by grinding products

    图  10  研磨产物制备Fe3C@C-CNTs复合材料,C/Fe值随制备时间的变化图

    Figure  10.  Preparation of Fe3C@C-CNTs composites by grinding products, C/Fe value with preparation time

    图  11  研磨产物制备的Fe3C@C-CNTs复合材料介电常数和磁导率

    Figure  11.  The permittivity and permeability of Fe3C@C-CNTs composites prepared by grinding products

    图  12  研磨产物制备的Fe3C@C-CNTs复合材料衰减常数(a)和阻抗匹配(b)

    Figure  12.  Fe3C@C-CNTs composites prepared by grinding products attenuation constant (a) and impedance matching(b)

    图  13  研磨产物制备的Fe3C@C-CNTs复合材料反射损耗图:(a)样品S2-1;(b-c)样品S2-2

    Figure  13.  Reflective loss diagram of Fe3C@C-CNTs composites prepared by grinding products: samples of S2-1 (a), S2-2 (b-c)

    表  1  −38 μm磁珠EDX结果

    Table  1.   −38 μm magnetospheres EDX results

    ElementOFeSiAlCaMgMnTi
    wt%32.352.45.72.63.32.50.90.3
    下载: 导出CSV

    表  2  磁珠摇床分选产物1、2、3的产率、密度、Fe含量

    Table  2.   Yield, density, and Fe content of magnetospheres shaker separation products

    Shaker separation products
    Product 1Product 2Product 3
    Yield/%49.0831.4217.96
    Density/(g·cm−3)4.074.445.01
    Fe/wt%47.4964.3671.43
    下载: 导出CSV

    表  3  Fe3C@C-CNTs复合材料的C/Fe值

    Table  3.   C/Fe value of Fe3C@C-CNTs composites

    SampleC/Fe value
    S1-18.06
    S1-26.71
    S1-36.34
    Note:C/Fe value—Mass ratio of C to Fe.
    下载: 导出CSV

    表  4  磁珠研磨产物的粒径变化.

    Table  4.   The particle size change of grinding products of magnetospheres.

    Grinding productsDav /μm
    No grinding magnetospheres28.82
    Product 122.62
    Product 218.23
    Note:Dav—Average grain diameter.
    下载: 导出CSV

    表  5  碳基吸波材料的性能对比

    Table  5.   Performance comparison of carbon-based absorbing materials

    SampleMass fraction
    /wt%
    Bandwith/GHz
    RLmin
    value/dB
    Refs.
    3D Fe3O4/CNTs503.9−51[4]
    Fe@RC455.3−47.1[10]
    MCNO /MWCNT*4.3−25.6[11]
    C@Fe@Fe3O4505.2−40[34]
    Fe/C nanofibers304−20.2[38]
    Fe3O4/C292.5−29.4[39]
    Fe@CNCs303−22.5[40]
    S1-3154.5−16.1This work
    S2-24.8−34.7
    Notes: RC—residual carbon; MCNO—magnetic carbon nano-onion matrix; MWCNT—multi-walled carbon nanotubes; CNCs—cored carbon nanocapsules.
    下载: 导出CSV
  • [1] 谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能 [J/OL]. 复合材料学报, 1-11

    2021-11-26]. https: //doi. org/10.13801/j. cnki. fhclxb. 20210715.001. XIE W H, GENG H R, LIU Y, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon compositeg [J/OL]. Journal of Composite Materials, 1-11[2021-11-26].https://doi.org/10.13801/j.cnki.fhclxb. 20210715. 001 (in Chinese).
    [2] 张开创, 高欣宝, 张倩, 等. 碳包覆磁改性碳纳米管基复合材料制备及吸波性能研究[J]. 兵器装备工程学报, 2019, 40(04):46-49. doi: 10.11809/bqzbgcxb2019.04.012

    ZHANG K C, GAO X B, ZHANG Q, et al. Preparation and Absorbing Properties of Carbon-Coated Magnetic Modified Carbon Nanotube Composites[J]. Journal of Equipment Engineering,2019,40(04):46-49(in Chinese). doi: 10.11809/bqzbgcxb2019.04.012
    [3] CUI L, HAN X, WANG F, et al. A review on recent advances in carbon-based dielectric system for microwave absorption[J]. Journal of Materials Science,2021,18(56):10782-10811.
    [4] ZHU L, ZENG X, CHEN M, et al. Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances[J]. RSC advances,2017,7(43):26801-26808. doi: 10.1039/C7RA04456A
    [5] FAN G, JIANG Y, XIN J, et al. Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18765-18774.
    [6] WEI B, ZHOU C, YAO Z, et al. Lightweight and high-efficiency microwave absorption of reduced graphene oxide loaded with irregular magnetic quantum dots[J]. Journal of Alloys and Compounds,2021,15(886):161330.
    [7] YUAN L, YING J, RONG L. In-situ Growth and Microwave Absorption Properties of Carbonyl Iron on Carbon Fiber Surface[J]. Chinese Journal of Inorganic Chemistry,2020,36(2):210-216.
    [8] WANG B, WU Q, FU Y, et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology,2021,30(86):91-109.
    [9] LI G, WANG L, LI W, XU Y. Mesoporous Fe/C and Core-Shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous & Mesoporous Materials,2015,211:97-104.
    [10] GAO S, CHEN L, ZHANG Y, SHAN J, Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber [J]. Composites Science and Technology, 2021, 213: 108921.
    [11] 邓钏, 张卫珂, 杨艳青, 等. 磁性纳米洋葱碳基复合材料的制备及其吸波性能[J]. 新型炭材料, 2019, 34(02):170-180.

    DENG C, ZHANG W K, YANG Y Q, et al. Preparation and microwave absorption properties of magnetic carbon nano-onion matrix composites[J]. New carbon materials,2019,34(02):170-180(in Chinese).
    [12] KUANG D, HOU L, WANG S, et al. Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles[J]. Carbon,2019,153:52-61. doi: 10.1016/j.carbon.2019.06.105
    [13] ZHANG Z, WU X, ZHOU T, et al. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion[J]. Proceedings of the Combustion Institute,2011,33(2):2853-2861. doi: 10.1016/j.proci.2010.07.061
    [14] VASSILEV S V, MENENDEZ R, BORREGO A G, et al. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates[J]. Fuel,2004,83(11):1563-1583.
    [15] SHARONOVA O M, ANSHITS N N, SOLOVYOV L A, et al. Relationship between composition and structure of globules in narrow fractions of ferrospheres[J]. Fuel,2013,111:332-343. doi: 10.1016/j.fuel.2013.03.059
    [16] ZHANG X M, LI J, HE B, et al. Bamboo-Shaped Carbon Nanotubes on Coal Fly Ash Cenospheres for Pb (II) Adsorption[J]. Journal of nanoscience and nanotechnology,2020,20(8):5089-5095. doi: 10.1166/jnn.2020.18480
    [17] ZHANG X M, LI J, HE B, YANG S, et al. Phase transformation and carbon precipitation of coal fly ash magnetospheres during a CVD process for microwave adsorption[J]. Ceramics International,2019,45(15):18980-18987. doi: 10.1016/j.ceramint.2019.06.138
    [18] SOKOL E V, KALUGIN V M, NIGMATULINA E N, et al. Ferrospheres from fly ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions[J]. Fuel,2002,81(7):867-876. doi: 10.1016/S0016-2361(02)00005-4
    [19] ZHANG Z, WU X, ZHOU T, et al. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion[J]. Proceedings of the Combustion Institute,2011,33(2):2853-2861. doi: 10.1016/j.proci.2010.07.061
    [20] XUE Q, LU S. Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis[J]. Journal of Zhejiang University-SCIENCE A,2008,9(11):1595-1600. doi: 10.1631/jzus.A0820051
    [21] 王欣, 展仁礼, 张晓民, 等. 粉煤灰磁珠精细化分级试验研究[J]. 选煤技术, 2021, 5(288):43-49.

    WANG X, ZHAN R L, ZHANG X M, et al. Experimental study on fine classification of magnetosphere from coal flyash[J]. Coal preparation technology,2021,5(288):43-49(in Chinese).
    [22] DONG S, ZHANG X, LI X, et al. SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption[J]. Chemical Engineering Journal,2020,392:123817. doi: 10.1016/j.cej.2019.123817
    [23] GAO S, ZHANG Y, XING H, et al. Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,387:124149. doi: 10.1016/j.cej.2020.124149
    [24] DING D, WANG Y, LI X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption[J]. carbon,2017,111:722-732. doi: 10.1016/j.carbon.2016.10.059
    [25] LIU W, SHAO Q, JI G, et al. Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal,2017,313:734-744. doi: 10.1016/j.cej.2016.12.117
    [26] STRZALKOWSKA E. Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash[J]. International Journal of Coal Geology,2021,240:103746. doi: 10.1016/j.coal.2021.103746
    [27] BARDE A A, KLAUSNER J F, MEI R. Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent[J]. international journal of hydrogen energy,2016,41(24):10103-10119. doi: 10.1016/j.ijhydene.2015.12.129
    [28] BAJWA N, LI X, AJIYAN P M, et al. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes[J]. Journal of nanoscience and nanotechnology,2008,8(11):6054-6064. doi: 10.1166/jnn.2008.SW02
    [29] PANPAN L I U, HANCHAO L I, Lin Y, et al. Influence of annealing temperature on the metal-catalyzed crystallization of tetrahedral amorphous carbon to graphene[J]. Chinese journal of materials research,2018,32(5):341-347.
    [30] WANG D T, WANG X C, ZHANG X, et al. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chinese Physics Letters,2020,37(4):045201. doi: 10.1088/0256-307X/37/4/045201
    [31] CHENG Y, ZHAO H, ZHAO Y, et al. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response[J]. Carbon,2020,161:870-879. doi: 10.1016/j.carbon.2020.02.011
    [32] LIU L, HE P, ZHOU K C, CHEN T F. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers[J]. AIP Advances,2013,3(8):082112. doi: 10.1063/1.4818495
    [33] GAO S, YANG S H, WANG H Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438-444. doi: 10.1016/j.carbon.2020.02.031
    [34] LV H, JI G, LIU W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features[J]. Journal of Materials Chemistry C,2015,3(39):10232-10241. doi: 10.1039/C5TC02512E
    [35] LI S, LIN L, YAO L, et al. MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,856:158183. doi: 10.1016/j.jallcom.2020.158183
    [36] 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能 [J/OL]. 复合材料学报: 1-12[2021-11-30]. https: //doi. org/10.13801/j. cnki. fhclxb. 20211105.001.

    YANG X, CAO M, JIAN Y, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites [J/OL]. Journal of Composite Materials, 1-12 [2021-11-30].https://doi.org/10.13801/j.cnki.fhclxb. 20211105. 001. (in Chinese)
    [37] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析 [J/OL]. 复合材料学报: 1-13[2021-11-30]. https: //doi. org/10.13801/j. cnki. fhclxb. 20210819.008.

    YE X C, OU Y B, YANG C, et al. Preparation of graphene_carbonyl iron powder wire and analysis of its wave absorption performance [J/OL]. Journal of Composite Materials, 1-13 [2021-11-30]. https://doi.org/10.13801/j.cnki.fhclxb. 20210819. 008. (in Chinese)
    [38] ZHENG Q, YU M, WANG W, et al. Enhanced microwave absorption performance of Fe/C nanofibers by adjusting the magnetic particle size using different electrospinning solvents[J]. Ceramics International,2020,46(18):28603-28612. doi: 10.1016/j.ceramint.2020.08.018
    [39] KHANI O, SHOUSHTARI M Z, JAZIREHPOUR M, et al. Effect of carbon shell thickness on the microwave absorption of magnetite-carbon core-shell nanoparticles[J]. Ceramics International,2016,42(13):14548-14556. doi: 10.1016/j.ceramint.2016.06.069
    [40] WANG Y, WANG W, SUN J, et al. Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance[J]. Carbon,2018,135:1-11. doi: 10.1016/j.carbon.2018.04.026
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 录用日期:  2022-02-17
  • 修回日期:  2022-02-06
  • 网络出版日期:  2022-03-17

目录

    /

    返回文章
    返回