Mean-field simulation of kink band formation in unidirectional composites
-
摘要:
纤维扭结是单向碳纤维复合材料在受轴向载荷压缩下,由于纤维初始扭转而引起的一种破坏机制。本文将首次在多尺度层面上进行单向复合材料的纤维扭结仿真。利用扭结模型对以前作者本人开发的非线性平均场脱粘模型进行扩展来定义纤维初始扭转角从而研究纤维具有初始扭转角的扭结过程,以及纤维不同初始扭转角对应力应变响应的影响。研究结果表明(如 图1 所示),非线性平均场脱粘模型与其他数值模型以及解析模型相比,能够从多尺度的层面有效地预测单向碳纤维复合材料在轴向载荷压缩下的纤维扭结的演化过程。此仿真方法相较于以往的文献中提出的宏观模拟、微观模拟以及解析法,达到同等精度但能更高效的优势,解决了在构件尺度上如何准确的预测纤维扭结失效的问题。非线性平均场脱粘模型对纤维扭结的预测结果(a)非线性平均场脱粘模型的模拟结果与其他模型关于应力-应变 $ {\text{σ}}_{\text{c}} $ -$ {{ \varepsilon }}_{\text{c}} $ 作对比(b)单向碳纤维复合材料在不同纤维初始扭转角下的压应力-应变$ {\text{σ}}_{\text{c}} $ -$ {{ \varepsilon }}_{\text{c}} $ 曲线-
关键词:
- 纤维扭结 /
- 纤维初始扭转 /
- 非线性平均场脱粘模型 /
- 平均非对称基体塑性 /
- 纤维-基体界面脱粘
Abstract: Fibre kinking is a failure mechanism of unidirectional carbon fibre-reinforced polymer (UD-CFRP) composites under longitudinal compression due to initial fibre misalignment. In view of this problem, macroscopic, microscopic and analytical methods have been proposed in the literature, but they all have certain limitations. Macroscopic models have poor prediction accuracy, microscopic models have high computational costs, analytical models can not be used on real geometries. In our previous work, a non-linear mean-field debonding model (NMFDM) was proposed to study non-linear effects of UD composites. The model considers not only the average asymmetric matrix plasticity (AAMP) but also the debonding failure of fibre-matrix interface. In this work, multi-scale simulations of kink band formation in UD composites were firstly investigated. Whereby a fibre kinking model was combined with the NMFDM for studying kink band formation of UD composites. The kink process of fibres under initial misalignment and the effect of different initial misalignment on stress and strain response were studied. The results show that the NMFDM can predict kind band formation on the multi-scale level in comparison with other numerical models and analytical models with the same accuracy but more efficiently. -
图 3 单根纤维上的应力状态
Figure 3. Traction on single fibre
$ {\text{σ}}_{\text{I}} $ is normal stress; $ {\text{τ}}_{\text{1}} $ and $ {\text{τ}}_{\text{2}} $ are the shear stresses; t is the stress interface vector; n is the first shear direction; $ {\text{s}}_{\text{1}} $ and $ {\text{s}}_{\text{2}} $ are the normal directions
图 8 AS4/8552复合材料四个阶段的纤维角度γ,轴向应力
$ {\text{σ}}_{\text{11}} $ ,面内剪切应力$ {\text{τ}}_{\text{12}} $ ,基体的剪切应力$ {\text{τ}}_{\text{M12}} $ ,基体的横向应力$ {\text{σ}}_{\text{M22}} $ 和基体的等效塑性应变$ {\text{e}}_{\text{v}} $ 图Figure 8. Contours of AS4/8552 composite with fibre angle γ,longitudinal stress
$ {\text{σ}}_{\text{11}} $ ,in-plane shear stress$ {\text{τ}}_{\text{12}} $ ,shear stress of the matrix$ {\text{τ}}_{\text{M12}} $ , transverse stress of matrix$ {\text{σ}}_{\text{M22}} $ and equivalent plastic strain$ {\text{e}}_{\text{v}} $ of the matrix at the four phases图 9 非线性平均场脱粘模型(NMFDM)的模拟结果与其它模型关于AS4/8552复合材料应力-应变
$ {\text{σ}}_{\text{c}} $ -$ {{ \varepsilon }}_{\text{c}} $ 作对比Figure 9. Comparison of the simulated results of the non-linear mean-field debonding model (NMFDM) with other models regarding compressive stress vs. compressive strain of AS4/8552 composite
表 1 8552树脂基体材料参数
Table 1. Material parameters of the 8552 matrix
Parameter of the matrix $ {\text{к}}_{\text{M}}^{\text{el}} $ $ {\text{к}}_{\text{M}\text{i}}^{\text{pl}} $ $ {{E}}_{\text{M}} $/MPa $ {{v}}_{\text{M}} $ $ {{Y}}_{\text{0}{i}} $/MPa $ {{H}}_{\text{1}{i}} $/MPa $ {{b}}_{{i}} $ $ {{H}}_{\text{2}{i}} $/MPa For shear(i=1) 3.97×103 0.32 67 3525 58 1.78×10−4 For non-shear(i=2) 67 6025 54 1.75×10−5 Notes: $ {\text{к}}_{\text{M}}^{\text{el}} $ and $ {\text{к}}_{\text{M}}^{\text{pl}} $ are the elastic set and plastic set of the matrix; $ {\text{E}}_{\text{M}} $ is the modulus of elasticity of the matrix; $ {\text{v}}_{\text{M}} $ is the Poisson's ratio of the matrix; $ {\text{Y}}_{\text{0}} $ is the initial yield stress;$ {\text{H}}_{\text{1}} $ and $ {\text{H}}_{\text{2}} $ are the hardening parameters; b is the material parameter. 表 2 AS4纤维和纤维-基体界面材料参数
Table 2. Material parameters of the AS4 fibre and the fibre-matrix interface
Material parameter $ {{E}}_{\text{F0}} $/MPa $ {{c}}^{\text{F}} $ $ {{v}}_{\text{F}} $ $ \text{μ} $ k $ {\text{σ}}_{\text{I}}^{\text{cr}} $/MPa α $ {\text{к}}_{\text{F}} $ 2.4×105 18.7 0.23 $ {\text{к}}_{\text{I}} $ 0.41 0.21 22.5 1.22 Notes: $ {\text{к}}_{\text{F}} $ and $ {\text{к}}_{\text{I}} $ are the parameters sets of the fibre and the interface; $ {\text{E}}_{\text{F0}} $ is the initial fibre stiffness; $ {\text{c}}^{\text{F}} $ is a constant; $ {\text{v}}_{\text{F}} $ is the Poisson's ratio of the fibre; $ \text{μ} $ and k are material parameters; $ {\text{σ}}_{\text{I}}^{\text{cr}} $ denotes the equivalent interface strength; α is a constant. -
[1] 李景华. 体育运动器材中化工材料的应用及智能化发展分析[J]. 粘接, 2020, 44(11):59-62,66. doi: 10.3969/j.issn.1001-5922.2020.11.015LI Jinghua. Analysis on the application and intelligent development of chemical materials in sports equipment[J]. Adhesive,2020,44(11):59-62,66(in Chinese). doi: 10.3969/j.issn.1001-5922.2020.11.015 [2] 马悦欣. γ-射线辐照对T700碳纤维及其复合材料界面性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2010.MA Yuexin. Effect of γ-ray irradiation on interfacial properties of T700 carbon fibre and its composites[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese). [3] 林德春, 潘鼎, 高健, 等. 碳纤维复合材料在航天航空领域的应力[J]. 玻璃钢, 2007(1):20-30.LIN Dechun, PAN Ding, GAO Jian, et al. Stress of carbon fibre composites in aerospace field[J]. Glass fibre reinforced plastic,2007(1):20-30(in Chinese). [4] 张小跃. 碳纤维复合材料强度对体育器材耐磨性能的影响[J]. 合成材料老化与应用, 2009, 49(4):160-162,32. doi: 10.16584/j.cnki.issn1671-5381.2020.04.047ZHANG Xiaoyue. Influence of strength of carbon fibre composite on wear resistance of sports equipment[J]. Aging and application of synthetic materials,2009,49(4):160-162,32(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2020.04.047 [5] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 3202:301-316. doi: 10.13801/j.cnki.fhclxb.20150211.002CHEN Yan, GE Ende, FU Yucan, et al. Research status and prospect of hole preparation technology of carbon fibre reinforced resin matrix composites[J]. Acta Materiae Compositae Sinica,2015,3202:301-316(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150211.002 [6] VOGLER T J and KYRIAKIDES S. On the initiation and growth of kink bands in fibre composites: Part i. experiments[J]. International Journal of Solids and Structures,2001,38(15):2639-2651. doi: 10.1016/S0020-7683(00)00174-8 [7] WAAS A M, and SCHULTHEISE C R. Compressive failure of composites, part II: experimental studies[J]. Progress in Aerospace Sciences,1996,32(1):43-78. doi: 10.1016/0376-0421(94)00003-4 [8] COSTA Sérgio, FAGERSTRÖM Martin, and OLSSON Robin. Development and validation of a finite deformation fibre kinking model for crushing of composites[J]. Composites Science and Technology,2020,197:108236. doi: 10.1016/j.compscitech.2020.108236 [9] MHERRÁRZ M, BERGAN A C, Lopes C S, et al. Computational micromechanics model for the analysis of fibre kinking in unidirectional fibre-reinforced polymers[J]. Mechanics of Materials,2020,142:103299. doi: 10.1016/j.mechmat.2019.103299 [10] PIMENTA S, GUTKIN R, PINHO S T, et al. A micromechanical model for kink-band formation: Part iianalytical modelling[J]. Composites Science and Technology,2009,69(7):956-964. [11] PUCK A. Festigkeitsanalyse von Faser-Matrix-Laminaten - Modelle für die Praxis[M]. München, Wien: Carl Hanser Verlag, 1996. [12] LINDE Peter, DE Boer Henk. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73(2):221-8. doi: 10.1016/j.compstruct.2005.11.062 [13] CAMANHO P P, BESSA M A, CATALANOTTI G, et al. Modeling the inelastic deformation and fracture of polymer composites - Part II: Smeared crack model[J]. Mech Mater,2013,59:36-49. doi: 10.1016/j.mechmat.2012.12.001 [14] DU Dandan, HU Yubing, LI Huaguan, et al. Open-hole tensile progressive damage and failure prediction of carbon fibre-reinforced PEEK–titanium laminates[J]. Composites B,2016,91:65-74. doi: 10.1016/j.compositesb.2015.12.049 [15] JIN Kai, WANG Hao, TAO Jie, et al. Mechanical analysis and progressive failure prediction for fibre metal laminates using a 3 D constitutive model[J]. Composites A,2019,124:105490. doi: 10.1016/j.compositesa.2019.105490 [16] 杨强, 解雍华, 孟松鹤, 等. 复合材料多尺度分析方法与典型原件拉伸损伤模拟[J]. 复合材料学报, 2015, 32(3): 617-624.YANG Qiang, XIE Yonghua, MENG Songhe, et al. Multiscale analysis method of composite materials and tensile damage simulation of typical components[J]. Acta Materiae Compositae Sinica, 015, 32(3): 617-624(in Chinese). [17] CHENG C, WANG Z, JIN Z, et al. Non-linear mean-field modelling of ud composite laminates accounting for average asymmetric plasticity of the matrix, debonding and progressive failure[J]. Composites Part B, Engineering,2021,224:109209. doi: 10.1016/j.compositesb.2021.109209 [18] BERGAN A and GARCEA S. In-situ observations of longitudinal compression damage in carbon epoxy cross-ply laminates using fast Synchrotron radiation computed tomo-graphy[C]. American Society for Composites 32 nd Technical Conference. West Lafayette, IN, 2017. [19] NAYA F, MHERRÁRZ M, LOPES C S, et al. Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions[J]. Composites Science and Technology,2017,144:26-35. doi: 10.1016/j.compscitech.2017.03.014 [20] HILL R. Continuum micro-mechanics of elastoplastic polycrystals[J]. Journal of the Mechanics and Physics of Solids,1965,13(2):89-101. doi: 10.1016/0022-5096(65)90023-2 [21] MORI T and TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica,1973,21(5):571-574. doi: 10.1016/0001-6160(73)90064-3 [22] CHENG C and MAHNKEN R. A multi-mechanism model for cutting simulation: A ginzburglandau type phase gradient and numerical implementations[J]. International Journal of Solids and Structures,2019,160:1-17. doi: 10.1016/j.ijsolstr.2018.10.007 [23] MARLETT K, TOMBLIN J, HOOPER E, et al. NCAMP Test Report: CAM-RP-2010-002 Rve A[R]. Technical Report. National Institute for Aciation Research, 2011. [24] RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. Determination of the mechanical properties of amorphous materials through instrumented nanoindentation[J]. Acta Materialia,2012,60(9):3953-3964. doi: 10.1016/j.actamat.2012.03.027 [25] HSU S Y, VOGLER T J, and KYRIAKIDES S. Compressive Strength Predictions for Fibre Composites[J]. Journal of Applied Mechanics,1998,65(1):7-16. doi: 10.1115/1.2789050 -

计量
- 文章访问数: 196
- HTML全文浏览量: 100
- 被引次数: 0