留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

落锤冲击下碳纤维增强混凝土梁的动态响应与损伤分析

马钢 郭栋才 李国强 王卓然

马钢, 郭栋才, 李国强, 等. 落锤冲击下碳纤维增强混凝土梁的动态响应与损伤分析[J]. 复合材料学报, 2022, 40(0): 1-17
引用本文: 马钢, 郭栋才, 李国强, 等. 落锤冲击下碳纤维增强混凝土梁的动态响应与损伤分析[J]. 复合材料学报, 2022, 40(0): 1-17
Gang MA, Dongcai GUO, Guoqiang LI, Zhuoran WANG. Dynamic response and damage analysis of carbon fiber reinforced concrete beams under drop hammer impact[J]. Acta Materiae Compositae Sinica.
Citation: Gang MA, Dongcai GUO, Guoqiang LI, Zhuoran WANG. Dynamic response and damage analysis of carbon fiber reinforced concrete beams under drop hammer impact[J]. Acta Materiae Compositae Sinica.

落锤冲击下碳纤维增强混凝土梁的动态响应与损伤分析

基金项目: 国家自然科学基金国际合作与交流项目(5201101735);山西省自然科学基金项目(201901D211108; 201901D211018)
详细信息
    通讯作者:

    马钢,博士,副教授,硕士生导师,研究方向为混凝土结构材料 E-mail: magang@tyut.edu.cn

  • 中图分类号: TU375.1

Dynamic response and damage analysis of carbon fiber reinforced concrete beams under drop hammer impact

  • 摘要: 普通混凝土在冲击载荷作用下断裂耗能能力差,而采用单丝态碳纤维掺入混凝土中制备的碳纤维增强混凝土(Carbon Fiber Reinforced Concrete,CFRC)不仅可使混凝土衍生出多种功能性,同时可大大改善混凝土的抗冲击性能。利用落锤试验机对CFRC梁在低速冲击下的动态力学响应进行研究,在此基础上建立基于纤维随机分布的混凝土细观力学模型,研究不同纤维掺量和冲击速度对CFRC梁在低速冲击下力学响应、断裂耗能以及破坏形态等的影响规律。结果表明:力学响应方面,基于随机纤维混凝土细观模型的仿真结果与试验结果符合较好;随着碳纤维体积掺量的增大,支座反力峰值变化不大,碳纤维掺量0.40vol%的混凝土梁跨中竖向位移较大,抗冲击韧性最佳。断裂耗能方面,当冲击速度低于6 m·s–1时,增大掺量有利于碳纤维于基体中发挥桥接作用,提升CFRC梁的断裂耗能能力;随着冲击速度的增大,为保证基体非裂缝区碳纤维与混凝土之间协同耗能,进一步提高碳纤维混凝土的纤维掺量是提升冲击下CFRC混凝土耗能的关键。破坏行为方面,碳纤维掺量0.80vol%的混凝土梁在冲击下在跨中主裂缝附近呈现数量较多的斜裂纹弥散开裂行为;当冲击速度达到12 m·s–1时,CFRC梁的破坏呈现弯剪破坏形态。本文的研究结果可为碳纤维增强混凝土在工程中的推广应用提供参考。

     

  • 图  1  碳纤维增强混凝土(CFRC)梁有限元模型

    Figure  1.  Finite element model of carbon fiber reinforced concrete beam

    图  2  碳纤维实物

    Figure  2.  Carbon fiber object

    图  3  水泥基试件断面碳纤维分散情况

    Figure  3.  Carbon fiber dispersion of cement-based specimen section

    图  4  INSTRON-9350落锤冲击试验装置

    Figure  4.  INSTRON-9350 Drop weight impact test device

    图  5  支座反力时程曲线:(a) PC梁;(b) CFRC梁 (碳纤维体积掺量0.20 vol%,冲击速度3 m·s–1)

    Figure  5.  Time history curve of support reaction: (a) PC beam;(b) CFRC beam (Carbon fiber volume content 0.20 vol%, impact velocity 3 m·s–1)

    图  6  跨中竖向位移时程曲线:(a) PC梁;(b) CFRC梁 (碳纤维体积掺量0.20 vol%,冲击速度3 m·s–1)

    Figure  6.  Time history curve of mid span vertical displacement : (a) PC beam;(b) CFRC beam (Carbon fiber volume content 0.20 vol%, impact velocity 3 m·s–1)

    图  7  冲击载荷下纤维混凝土梁的结构响应示意图

    Figure  7.  Structural response diagram of fiber reinforced concrete beam under impact load

    图  8  裂缝开展处碳纤维桥接作用

    Figure  8.  Carbon fiber bridging effect at crack development

    图  9  梁的破坏形态:(a) PC梁;(b) CFRC梁(碳纤维体积掺量0.20 vol%,冲击速度3 m·s–1)

    Figure  9.  Failure modes of beams: (a) PC beam; (b) CFRC beam (Carbon fiber volume content 0.20 vol%, impact velocity 3 m·s–1)

    图  10  冲击载荷下PC梁模拟破坏过程 (冲击速度3 m·s–1)

    Figure  10.  Simulation of failure process of PC beam under impact load (Impact velocity 3 m·s–1)

    图  11  冲击载荷下CFRC梁模拟破坏过程(碳纤维体积掺量0.20vol%,冲击速度3 m·s–1)

    Figure  11.  Simulation of failure process of CFRC beam under impact load (Carbon fiber volume content 0.20vol%, impact velocity 3 m·s–1)

    图  12  CFRC梁支座反力时程曲线

    Figure  12.  Time history curve of support reaction force of CFRC beam

    图  13  CFRC梁跨中竖向位移时程曲线

    Figure  13.  Time history curve of midspan vertical displacement

    图  14  CFRC梁支座反力-位移曲线

    Figure  14.  Support reaction-Displacement curve

    图  15  不同碳纤维体积掺量CFRC试件断裂耗能

    Figure  15.  Fracture energy dissipation of CFRC specimens with different volume fractions of carbon fiber

    图  16  不同碳纤维体积掺量的CFRC梁破坏形态(冲击速度3 m·s–1)

    Figure  16.  Failure modes of CFRC beams with different volume fractions of carbon fiber (Impact velocity 3 m·s–1)

    图  17  不同碳纤维体积掺量的CFRC梁破坏形态(冲击速度12 m·s–1)

    Figure  17.  Failure modes of CFRC beams with different volume fractions of carbon fiber (Impact velocity 12 m·s–1)

    图  18  CFRC梁支座反力时程曲线

    Figure  18.  Time history curve of support reaction force of CFRC beams

    图  19  CFRC梁跨中竖向位移时程曲线

    Figure  19.  Time history curve of mid span vertical displacement of CFRC beams

    图  20  CFRC梁支座反力-位移曲线

    Figure  20.  Support reaction-displacement curves of CFRC beams

    图  21  不同冲击速度下CFRC梁试件断裂耗能

    Figure  21.  Fracture energy dissipation of CFRC beam specimens under different impact velocities

    图  22  不同冲击速度下CFRC梁破坏形态(碳纤维体积掺量0.40 vol%)

    Figure  22.  Failure modes of CFRC beams under different impact velocities (Volume fraction of carbon fiber 0.40 vol%)

    图  23  不同冲击速度下CFRC梁破坏形态(碳纤维体积掺量0.80 vol%)

    Figure  23.  Failure modes of CFRC beams under the same impact velocity(Volume fraction of carbon fiber 0.80 vol%)

    表  1  混凝土模型参数

    Table  1.   Concrete model parameters

    ParameterDilation
    angle/(°)
    Flow potential
    offset/mm
    Ultimate strength ratio
    of biaxial compression to
    uniaxial compression
    Invariable
    stress ratio
    Coefficient of viscosityDensity/
    (kg·m−3)
    Young's
    modulus/
    GPa
    Poisson
    ratio
    Numerical380.11.160.6670.00001240032.50.2
    下载: 导出CSV

    表  2  纤维物理力学性能

    Table  2.   Physical and mechanical properties of fiber

    Fiber typeDensity/(g·cm−3)Tensile strength/MPaElastic modulus/GPaPercentage elongation/%
    Carbon fiber1.7835302301.5
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Proportioning of concrete

    ComponentWaterCementCoarse
    aggregate
    Fine aggregateDispersing agentWater reducerDefoaming agent
    Density/(kg·m−3)22040012006800.80.80.12
    下载: 导出CSV

    表  4  CFRC试件编号

    Table  4.   CFRC test number

    NumberingDrop hammer quality/kgVolume content/vol%Impact velocity /(m·s–1)
    0.00vol%CF/C-320.520.003
    0.20vol%CF/C-320.520.203
    0.40vol%CF/C-320.520.403
    0.80vol%CF/C-320.520.803
    0.00vol%CF/C-1220.520.0012
    0.20vol%CF/C-1220.520.2012
    0.40vol%CF/C-1220.520.4012
    0.80vol%CF/C-1220.520.8012
    Notes:CF—Carbon fiber; C—Concrete.
    下载: 导出CSV

    表  5  不同碳纤维体积掺量(0.00vol%、0.20vol%、0.40vol%、0.80vol%)碳纤维的CFRC梁模拟结果

    Table  5.   Simulation results of CFRC beams with different volume fraction of carbon fiber (0.00vol%, 0.20vol%, 0.40vol%, 0.80vol%)

    NumberingPeak value of impact force/kNMaximum vertical displacement/mm
    0.00vol%CF/C-328.362.15
    0.20vol%CF/C-328.112.61
    0.40vol%CF/C-330.372.85
    0.80vol%CF/C-331.212.86
    0.00vol%CF/C-1229.032.31
    0.20vol%CF/C-1228.443.31
    0.40vol%CF/C-1227.943.71
    0.80vol%CF/C-1225.694.25
    下载: 导出CSV

    表  6  不同冲击速度下CFRC梁模拟结果

    Table  6.   Simulation results of CFRC beams under different impact velocities

    NumberingDrop hammer quality/kgPeak value of impact force/kNMaximum vertical displacement/mm
    0.40vol%CF/C-1.520.5234.191.36
    0.40vol%CF/C-320.5230.372.85
    0.40vol%CF/C-620.5229.673.58
    0.40vol%CF/C-1220.5227.943.71
    0.80vol%CF/C-1.520.5236.451.00
    0.80vol%CF/C-320.5231.212.86
    0.80vol%CF/C-620.5227.423.60
    0.80vol%CF/C-1220.5225.694.25
    下载: 导出CSV
  • [1] SOHEL K M A, AI-JABRI K, AI ABRI A H S. Behavior and design of reinforced concrete building columns subjected to low-velocity car impactStructures[J]. Elsevier,2020,26:601-616.
    [2] 周晓宇, 马如进, 陈艾荣. 行车落物冲击下钢筋混凝土桥面板的安全性能[J]. 华南理工大学学报(自然科学版), 2018, 46(4):137-145.

    ZHOU Xiaoyu, MA Rujin, CHEN Airong. Safety performance of a bridge deck under impact of a massive falling cargo from passing truck[J]. Journal of South China University of Technology (Natural Science Edition),2018,46(4):137-145(in Chinese).
    [3] LIU Siming, et al. Dynamic simulation analysis based on LS-DYNA about impact force on bridge pier caused by vehicle[J]. Railway Standard Design,2013(8):70-74.
    [4] BIBORA P, DRDLOVA M, PRACHAR V, et al. The impact of various types of steel fibres on the strength parameters and blast resistance of high performance concrete[J]. Materials Science and Engineering,2019,596:1-10.
    [5] YOO D-Y, BANTHIA N. Impact resistance of fiber-reinforced concrete A review[J]. Cement and Concrete Composites,2019,104:103389. doi: 10.1016/j.cemconcomp.2019.103389
    [6] 刘玲玲. 碳纤维织物增强混凝土薄板力学性能研究[D]. 长沙: 湖南大学, 2017.

    LIU Lingling. Research on the mechanical properties of carbon textile reinforced concrete thin plates[D]. Changsha: Hunan University, 2017(in Chinese).
    [7] 程小全, 康炘蒙, 邹健, 俞彬彬, 郦正能. 平面编织复合材料层合板低速冲击后的拉伸性能[J]. 复合材料学报, 2008(5):163-168. doi: 10.3321/j.issn:1000-3851.2008.05.027

    CHENG Xiaoquan, KANG Xinmeng, ZOU Jian, SHU Binbin, LI Zhengneng. Tensile properties of plane woven composite laminates after low velocity impact[J]. Acta Materiae Compositae Sinica,2008(5):163-168(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.027
    [8] TSESARSKY M, PELED A, KATZ A, et al. Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells Static and impact properties[J]. Construction and Building Materials,2013,44:514-523. doi: 10.1016/j.conbuildmat.2013.03.031
    [9] Zhu Miaochang, et al. Bond behavior of carbon fabric reinforced cementitious matrix (FRCM) composites considering matrix impregnation[J]. Composite Structures,2021,262:113350. doi: 10.1016/j.compstruct.2020.113350
    [10] ZAKI M A, RASHEED H A. Characterizing debonding strain in sand-lightweight high strength concrete T beams strengthened with CFRP sheets[J]. Composite Structures,2021,262:113630. doi: 10.1016/j.compstruct.2021.113630
    [11] WEI A, AL-AMERI R, KOAY Y C, et al. Triple-functional carbon fibre reinforced polymer for strengthening and protecting reinforced concrete structures[J]. Composites Communications,2021,24:100648. doi: 10.1016/j.coco.2021.100648
    [12] Li Pengda, et al. Axial stress–strain behavior of carbon FRP-confined seawater sea-sand recycled aggregate concrete square columns with different corner radii[J]. Composite Structures,2021,262:113589. doi: 10.1016/j.compstruct.2021.113589
    [13] Surendra P, Shah. Concrete and fiber reinforced concrete subjected to impact loading[J]. MRS Online Proceedings Library,1985,64(1):181-201.
    [14] LAVAGNA L, MUSSO S, FERRO G, et al. Cement-based composites containing functionalized carbon fibers[J]. Cement and Concrete Composites,2018,88:165-171. doi: 10.1016/j.cemconcomp.2018.02.007
    [15] CHUANG W, GENG-SHENG J, BING-LIANG L, et al. Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites[J]. Ceramics International,2017,43(17):15122-15132. doi: 10.1016/j.ceramint.2017.08.041
    [16] CHUNG D D L. Cement reinforced with short carbon fibers: a multifunctional material[J]. Composites Part B:engineering,2000,31(6-7):511-526. doi: 10.1016/S1359-8368(99)00071-2
    [17] 张剑, 王立峰, 叶见曙. 碳纤维增强复合材料筋混凝土梁非线性力学性能[J]. 复合材料学报, 2009, 26(4):156-162. doi: 10.3321/j.issn:1000-3851.2009.04.028

    ZHANG Jian, WANG Lifeng, YE Jianshu. Nonlinear mechanical properties of concrete beam with carbon fiber reinforced composite rebars[J]. Acta Materiae Compositae Sinica,2009,26(4):156-162(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.04.028
    [18] ZAHRA S, TABATABAEI, et al. Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading[J]. International Journal of Impact Engineering,2013,57:70-80. doi: 10.1016/j.ijimpeng.2013.01.006
    [19] CHUANG Wang, et al. Influences of molding processes and different dispersants on the dispersion of chopped carbon fibers in cement matrix[J]. Heliyon,2018,4(10):e00868. doi: 10.1016/j.heliyon.2018.e00868
    [20] HAMBACH M, MOLLER H, NEUMANN T, et al. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (> 100MPa)[J]. Cement and Concrete Research,2016,89:80-86. doi: 10.1016/j.cemconres.2016.08.011
    [21] TABATABAEI Z S, VOLZ J S, KEENER D I, et al. Comparative impact behavior of four long carbon fiber reinforced concretes[J]. Materials & Design,2014,55:212-223.
    [22] GAO Jie, et al. Characterization of carbon fiber distribution in cement-based composites by computed tomography[J]. Construction and Building Materials,2018,177:134-147. doi: 10.1016/j.conbuildmat.2018.05.114
    [23] XU Z, HAO H, LI H N. Mesoscale modelling of fibre reinforced concrete material under compressive impact loading[J]. Construction and Building Materials,2012,26(1):274-288. doi: 10.1016/j.conbuildmat.2011.06.022
    [24] CHIARELLO M, ZINNO R. Electrical conductivity of self-monitoring CFRC[J]. Cement and Concrete Composites,2005,27(4):463-469. doi: 10.1016/j.cemconcomp.2004.09.001
    [25] HAFNER S, ECKARDT S, LUTHER T, et al. Mesoscale modeling of concrete: geometry and numerics[J]. Computers & Structures,2006,84(7):450-461.
    [26] 赵燕茹, 郝松, 王磊, 刘宇蛟, 时金娜. 基于数字图像相关的钢纤维增强水泥基复合材料的冲击损伤特性[J]. 复合材料学报, 2018, 35(5):1325-1331.

    ZHAO Yanru, HAO Song, WANG Lei, LIU Yujiao, SHI Jinna. Impact damage characteristics of steel fiber reinforced cement matrix composites based on digital image correlation[J]. Acta Materiae Compositae Sinica,2018,35(5):1325-1331(in Chinese).
    [27] FANG Qin, ZHANG Jinhua. Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading[J]. Construction and Building Materials,2013,44:118-132. doi: 10.1016/j.conbuildmat.2013.02.067
    [28] LIANG Xiangwei, WU Chengqiang. Meso-scale modelling of steel fibre reinforced concrete with high strength[J]. Construction and Building Materials,2018,165:187-198. doi: 10.1016/j.conbuildmat.2018.01.028
    [29] 中国建筑科学研究院. 混凝土结构设计规范 GB50010-2010(2015年版)[M]. 北京: 中国建筑工业出版社, 2016.

    China Academy of Building Sciences. Code for design of concrete structures GB50010-2010(2015 edition)[M]. Beijing: China Construction Industry Press, 2016(in Chinese).
  • 加载中
计量
  • 文章访问数:  136
  • HTML全文浏览量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 录用日期:  2022-01-24
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-02-24

目录

    /

    返回文章
    返回