留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性

陈芬 杜春慧 胡锦泰 吴春金

陈芬, 杜春慧, 胡锦泰, 等. MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 陈芬, 杜春慧, 胡锦泰, 等. MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性[J]. 复合材料学报, 2022, 40(0): 1-10
Fen CHEN, Chunhui DU, Jintai HU, Chunjin WU. MOF in-situ growth modified poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane and its anti-fouling performance for emulsified oil wastewater[J]. Acta Materiae Compositae Sinica.
Citation: Fen CHEN, Chunhui DU, Jintai HU, Chunjin WU. MOF in-situ growth modified poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane and its anti-fouling performance for emulsified oil wastewater[J]. Acta Materiae Compositae Sinica.

MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性

基金项目: 浙江省基础公益研究计划项目(No. LGF21 E080008)
详细信息
    通讯作者:

    杜春慧,博士,副教授,研究方向为功能膜材料及其应用 E-mail:chunhuidu@zjgsu.edu.cn

  • 中图分类号: TQ028.8

MOF in-situ growth modified poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane and its anti-fouling performance for emulsified oil wastewater

Funds: Public Research Project of Zhejiang Province (No. LGF21 E080008);
  • 摘要: 金属-有机框架(MOF)材料有望提高正渗透(FO)膜的水通量和抗污染性,以提高其对乳化油废水的分离性能。为将MOF引入FO膜,首先通过相转化法制备聚对氯甲基苯乙烯-聚偏氟乙烯(PCMS-PVDF)共混底膜,以底膜中的氯甲基基团(—CH2Cl)为反应位点与2-甲基咪唑(Hmim)中的仲胺或叔胺反应,接着与硝酸锌(Zn(NO3)2)反应,以在膜表面原位生长金属有机骨架沸石咪唑酯骨架-8(ZIF-8),最后经界面聚合制备抗污染正渗透(FO)复合膜。通过SEM、XPS、FTIR和接触角测定仪等,对底膜和FO膜的表面化学结构以及膜亲/疏水性能等进行表征。结果表明,ZIF-8均匀生长在PCMS-PVDF底膜表面,且该纳米粒子为形状较规则的立方晶体。由于ZIF-8的存在使底膜表面较为疏水,但界面聚合后形成的聚酰胺层重新使膜表面变为亲水。对膜的渗透分离和抗污染性研究表明,在FO模式下,以1 mol/L的NaCl为汲取液时,未经ZIF-8改性的FO膜(PCMS-PVDF-FO)水通量仅为12.4 L·m−2·h−1,而经过ZIF-8改性后的FO膜(ZIF-8/PCMS-PVDF-FO)水通量可达到20.7 L·m−2·h−1。对乳化油模拟废水分离实验表明,经过四次纯水-乳化油分离循环后,正渗透膜ZIF-8/PCMS-PVDF-FO的纯水通量恢复率仍保持在89.9%,总污染率为27.5%;而相同情况下PCMS-PVDF-FO的通量恢复率仅为66.9%,总污染率上升为66.2%。综上,经过ZIF-8原位生长改性的正渗透复合膜在乳化油废水分离方面表现出较优异的性能。

     

  • 图  1  ZIF-8/聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜(ZIF-8/PCMS-PVDF-FO)膜制备流程示意图

    Figure  1.  Schematic diagram of preparation process of ZIF-8/poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane (ZIF-8/PCMS-PVDF-FO)

    图  2  各底膜及ZIF-8改性正渗透复合膜的红外光谱图

    Figure  2.  ATR-FTIR spectra of the substrates and ZIF-8 modified FO composite membrane

    图  3  PCMS-PVDF和ZIF-8/PCMS-PVDF膜的XPS扫描光谱图

    Figure  3.  XPS scan curves of membranes PCMS-PVDF and ZIF-8/PCMS-PVDF

    图  4  底膜 (PCMS-PVDF和ZIF-8/PCMS-PVDF)和正渗透复合膜(PCMS-PVDF-FO和ZIF-8/PCMS-PVDF-FO)的表面和断面扫描电镜照片

    Figure  4.  SEM images of surface and section of the substrate membrane (PCMS-PVDF and ZIF-8/PCMS-PVDF) and the forward osmosis composite membrane(PCMS-PVDF-FO and ZIF-8/PCMS-PVDF-FO)

    图  5  底膜 (PCMS-PVDF和ZIF-8/PCMS-PVDF)和正渗透复合膜(PCMS-PVDF-FO和ZIF-8/PCMS-PVDF-FO)的静态接触角

    Figure  5.  Static contact angle of the substrate membrane (PCMS-PVDF and ZIF-8/PCMS-PVDF) and the forward osmosis composite membrane(PCMS-PVDF-FO and ZIF-8/PCMS-PVDF-FO)

    图  6  不同汲取液PCMS-PVDF-FO与ZIF-8/PCMS-PVDF-FO膜的水通量和反向盐通量

    Figure  6.  Water flux and reverse salt flux of PCMS-PVDF-FO与ZIF-8/PCMS-PVDF-FO under different draw solution

    图  7  PCMS-PVDF-FO与ZIF-8/PCMS-PVDF-FO膜水-乳化油循环分离实验中通量变化

    Figure  7.  Flux changes of PCMS-PVDF-FO与ZIF-8/PCMS-PVDF-FO during water-emulsified oil cycling separation experiment

    图  8  经过四个循环PCMS-PVDF-FO和ZIF-8/PCMS-PVDF-FO抗污染性能

    Figure  8.  The antifouling properties of PCMS-PVDF-FO and ZIF-8/ PCMS-PVDF-FO after four cycles

    Rir —Irreversible fouling rate;Rr —Reversible fouling rate

    图  9  经过四个循环后PCMS-PVDF-FO和ZIF-8/PCMS-PVDF-FO的纯水通量恢复率

    Figure  9.  The pure water flux recovery ratio for the PCMS-PVDF-FO和ZIF-8/PCMS-PVDF-FO after four cycles

    图  10  ZIF-8/PCMS-PVDF-FO分离乳化油示意图

    Figure  10.  Schematic diagram of emulsified oil separation by ZIF-8/PCMS-PVDF-FO

    表  1  XPS测定的PCMS-PVDF和ZIF-8/PCMS-PVDF表面元素比重(at%)

    Table  1.   Specific gravity of elements on the surface of membranes PCMS-PVDF and ZIF-8/PCMS-PVDF by XPS determination (at%)

    Membrane IDCNCl
    PCMS-PVDF99.150.85
    ZIF-8/PCMS-PVDF93.735.940.33
    下载: 导出CSV

    表  2  文献报道不同FO膜的正渗透性能

    Table  2.   Permeability of different FO membrane reported by the literature

    Membrane IDJw/( L·m−2·h−1)Js/(g·m−2·h−1)Js/Jw(g/L)Reference
    PVDF/PCMS-ZIF-820.73.10.15This work
    PSU-UiO-6620.74.30.21[26]
    PES-GO16.17.50.47[27]
    ZIF-8/PDA/PS*9.63.80.4[28]
    PES-GQDs@UiO-66-NH259.319.10.32[29]
    PSF-UiO-PDA22.25.720.26[30]
    Notes:The draw solution for FO membrane is 1 mol/L NaCl ,* represents 1 mol/L MgCl2;Jw means water flux;Js means salt flux;PSU-UiO-66 — Polysulfon-UiO-66; PES-GO — Polyethersulfone-graphene oxide; ZIF-8/PDA/PS — ZIF-8/poly(dopamine) /polysulfone;PES-GQDs@UiO-66-NH2 — Polyethersulfone-graphene quantum dots @ UiO-66-NH2; PSF-UiO-PDA — Polysulfone-UiO-66-(COOH)2-poly(dopamine).
    下载: 导出CSV
  • [1] LEE W J, GOH P S, LAU W J, et al. Antifouling zwitterion embedded forward osmosis thin film composite membrane for highly concentrated oily wastewater treatment[J]. Separation and Purification Technology,2019,214:40-50. doi: 10.1016/j.seppur.2018.07.009
    [2] CHAKRABARTY B, GHOSHAL A K, PURKAIT M K. Cross-flow ultrafifiltration of stable oilin-water emulsion using polysulfone membranes, Chemical Engineering Journal, 2010, 165(2): 447-456.
    [3] DAS P, SINGH K KK, DUTTA S. Insight into emerging applications of forward osmosis systems[J]. Journal of Industrial and Engineering Chemistry,2019,72:1-17. doi: 10.1016/j.jiec.2018.12.021
    [4] HU B, JIANG M, ZHAO S, et al. Biogas slurry as draw solution of forward osmosis process to extract clean water from micro-polluted water for hydroponic cultivation[J]. Journal of Membrane Science,2019,576:88-95. doi: 10.1016/j.memsci.2019.01.029
    [5] LAMBRECHTS R, SHELDON M S. Performance and energy consumption evaluation of a fertiliser drawn forward osmosis (FDFO) system for water recovery from brackish water[J]. Desalination,2019,456:64-73. doi: 10.1016/j.desal.2019.01.016
    [6] KIM D I, GWAK G, ZHAN M, et al. Sustainable dewatering of grapefruit juice through forward osmosis: Improving membrane performance, fouling control, and product quality[J]. Journal of membrane science,2019,578:53-60. doi: 10.1016/j.memsci.2019.02.031
    [7] GONZALES R R, PARK M J, BAE T H, et al. Melamine-based covalent organic framework-incorporated thin film nanocomposite membrane for enhanced osmotic power generation[J]. Desalination,2019,459:10-19. doi: 10.1016/j.desal.2019.02.013
    [8] ZHENG K, ZHOU S, ZHOU X. A low-cost and high-performance thin-film composite forward osmosis membrane based on an SPSU/PVC substrate[J]. Scientific reports,2018,8(1):1-13.
    [9] WU X, FIELD R W, WU J J, et al. Polyvinylpyrrolidone modified graphene oxide as a modifier for thin film composite forward osmosis membranes[J]. Journal of Membrane Science,2017,540:251-260. doi: 10.1016/j.memsci.2017.06.070
    [10] ZHAO X, LI J, LIU C. A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance[J]. Desalination,2017,413:176-183. doi: 10.1016/j.desal.2017.03.021
    [11] XU L, YANG T, LI M, et al. Thin-film nanocomposite membrane doped with carboxylated covalent organic frameworks for efficient forward osmosis desalination[J]. Journal of Membrane Science,2020,610:118111. doi: 10.1016/j.memsci.2020.118111
    [12] TIRAFERRI A, KANG Y, GIANNELIS E P, et al. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles[J]. ACS applied materials & interfaces,2012,4(9):5044-5053.
    [13] ZHENG J, LI M, YU K, et al. Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property[J]. Journal of membrane science,2017,524:344-353. doi: 10.1016/j.memsci.2016.11.032
    [14] LI M P, ZHANG X, ZHANG H, et al. Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity[J]. Separation and Purification Technology,2020,247:116990. doi: 10.1016/j.seppur.2020.116990
    [15] FU W, CHEN J, LI C, et al. Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid selective layer[J]. Journal of Colloid and Interface Science,2021,585:158-166. doi: 10.1016/j.jcis.2020.11.092
    [16] HUNG W S, AN Q F, HU C C, et al. Non-destructive means of probing a composite polyamide membrane for characteristic free volume, void, and chemical composition[J]. RSC advances,2016,6(88):85019-85025. doi: 10.1039/C6RA16047F
    [17] BEH J J, OOI B S, LIM J K, et al. Development of high water permeability and chemically stable thin film nanocomposite (TFN) forward osmosis (FO) membrane with poly (sodium 4-styrenesulfonate)(PSS)-coated zeolitic imidazolate framework-8 (ZIF-8) for produced water treatment[J]. Journal of Water Process Engineering,2020,33:101031. doi: 10.1016/j.jwpe.2019.101031
    [18] DU C H, ZHANG X Y, WU C J. Chitosan-modified graphene oxide as a modifier for improving the structure and performance of forward osmosis membranes[J]. Polymers for Advanced Technologies,2020,31(4):807-816. doi: 10.1002/pat.4816
    [19] 刘和秀, 刘冬林, 周媛, 等. 对氯甲基苯乙烯及其聚合物的合成研究[J]. 广东化工, 2014, 41(22):16-17.

    LIU H X, LIU D L, ZHOU YUAN, et al. Studies on Synthesis of 4-Chloro-alpha-methylstyrene and Its Homopolymer[J]. Guangdong Chemical Industry,2014,41(22):16-17(in Chinese).
    [20] SHAMSAEI E, LOW Z X, LIN X, et al. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support[J]. Chemical communications,2015,51(57):11474-11477. doi: 10.1039/C5CC03537F
    [21] CHIAO Y H, SENGUPTA A, CHEN S T, et al. Zwitterion augmented polyamide membrane for improved forward osmosis performance with significant antifouling characteristics[J]. Separation and Purification Technology,2019,212:316-325. doi: 10.1016/j.seppur.2018.09.079
    [22] LINDER-PATTON O M, DE PRINSE T J, FURUKAWA S, et al. Influence of nanoscale structuralisation on the catalytic performance of ZIF-8: a cautionary surface catalysis study[J]. CrystEngComm,2018,20(34):4926-4934. doi: 10.1039/C8CE00746B
    [23] NAGARAJU D, BHAGAT D G, BANERJEE R, et al. In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation[J]. Journal of Materials Chemistry A,2013,1(31):8828-8835. doi: 10.1039/c3ta10438a
    [24] LUO F, WANG J, YAO Z, et al. Polydopamine nanoparticles modified nanofiber supported thin film composite membrane with enhanced adhesion strength for forward osmosis[J]. Journal of Membrane Science,2021,618:118673. doi: 10.1016/j.memsci.2020.118673
    [25] LEI Z, DENG Y, WANG C. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction[J]. Journal of materials chemistry A,2018,6(7):3258-3263. doi: 10.1039/C7TA10566E
    [26] MA D, PEH S B, HAN G, et al. Thin-Film Nanocomposite (TFN) Membranes Incorporated with Super-Hydrophilic Metal-Organic Framework (MOF) UiO-66: Toward Enhancement of Water Flux and Salt Rejection[J]. Applied Materials & Interfaces,2017,9(8):7523-7534.
    [27] SONG X, ZHANG Y, ABDEL-GHAFAR H M, et al. Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis[J]. Chemical Engineering Journal,2021,412:128607. doi: 10.1016/j.cej.2021.128607
    [28] WANG X P, HOU J W, CHEN F S, et al. In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes[J]. Separation and Purification Technology,2019,236:116239.
    [29] BAGHERZADEH M, BAYRAMI A, AMINI M. Enhancing forward osmosis (FO) performance of polyethersulfone/polyamide (PES/PA) thin-film composite membrane via the incorporation of GQDs@ UiO-66-NH2 particles[J]. Journal of Water Process Engineering,2020,33:10110.
    [30] EGHBALAZAR T, SHAKERI A. High-Performance thin-Film nanocomposite forward osmosis membranes modified with Poly (dopamine) coated UiO66-(COOH)2[J]. Separation and Purification Technology,2021,277:119438. doi: 10.1016/j.seppur.2021.119438
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-05-21
  • 修回日期:  2022-05-06
  • 网络出版日期:  2022-06-09

目录

    /

    返回文章
    返回