Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures
-
摘要:
改性聚氨酯混凝土是一种钢桥面铺装的新材料,具有较好的耐磨性、防水性,与钢材的黏结性较好,常温条件即可铺装成型,桥面铺装完毕后两小时即可通车。钢桥面铺装材料易受温度影响而产生破坏,其中拉伸破坏最为常见。作为一种新型混凝土,国内外对改性聚氨酯混凝土的拉伸性能和本构关系研究较少,对其与温度相关的本构关系研究尚处空白,阻碍该材料的进一步广泛应用。本文自主设计和制作了拉伸试验新试件和新试验夹具,与参考相关文献制作的试件进行了对比试验,发现新试件与新夹具组合的试验方案有效改善了加载过程中试件的局部应力集中效应,效果较好。本文使用自主设计的试验方案在-10℃、0℃、15℃、40℃和60℃五组温度下分别对改性聚氨酯混凝土进行单轴拉伸试验研究,得到其单轴拉伸应力-应变曲线和各种拉伸性能指标。试验结果表明,随温度的升高,改性聚氨酯混凝土的抗拉强度、拉伸弹性模量均呈减小趋势;峰值应变、断裂能密度和拉压比均呈增大趋势。其中60℃时的抗拉强度(3.95MPa)仅为15℃条件下(9.79MPa)的40.35%,受温度影响较为明显。提出了各拉伸性能指标的温度相关计算式。构建适用于改性聚氨酯混凝土的单轴拉伸本构关系,计算与试验结果吻合良好。为该材料未来的工程应用提供参考。 单轴拉伸试验试件(a)和试验夹具(b)的尺寸图 Abstract: The steel bridge deck pavement materials are susceptible to damage caused by temperature, among which tensile damage is the most common. Modified polyurethane concrete is a new type of steel bridge deck pavement material. In order to study the effect of temperature on its tensile properties, uniaxial tensile experiments were carried out at −10°C, 0°C, 15°C, 40°C and 60°C. In order to ensure the success of the experiment, two kinds of experimental specimens (dumbbell-shaped specimen and dumbbell-shaped specimen with circular arc edge) were first designed. Meanwhile, a novel tensile testing fixture used to match the specimen was designed, and the experiment comparison of the two specimens was carried out. Through the uniaxial tensile experiment, the stress-strain curves were obtained and the tensile performance indexes were calculated according to the curve. The results show that using the dumbbell-shaped specimen with circular arc edge and the new tensile testing fixture has better effect. The new fixture can restrain the deformation of the fixture by adding bolts, so as to effectively reduce the stress concentration in the loading process. With the increase of temperature, the tensile strength and tensile elastic modulus of modified polyurethane concrete decrease. The peak strain, fracture energy density and tension-compression ratio all increase. The temperature related expressions of the tensile performance indexes are proposed. The uniaxial tensile constitutive relation of modified polyurethane concrete is constructed, and the calculation is in good agreement with the experimental results. The results can serve as basic references for the future engineering application of this material. -
表 1 改性聚氨酯混凝土配合比
Table 1. Mix proportion of modified polyurethane concrete
Component Particle size D/mm Mass fraction/% Fineness modulus Apparent density
/(kg·m−3)Coarse aggregate
(4.76-9.52 mm)4.76≤D≤9.52 30 3.4 2600 Fine aggregate
(0.16-4.76 mm)0.16≤D≤0.62 17.8 2.5 2580 0.62≤D≤2.35 20 2.35≤D≤4.76 16.8 Modified polyurethane binder - 15.2 - - Catalyst - 0.2 - - 表 2 改性聚氨酯混凝土单轴拉伸试验方法效果对比
Table 2. Effect comparison of uniaxial tensile experiment method for modified polyurethane concrete
Number Experimental method Diagram Thickness w Specimen failure Damage feature Reference LS-1 End bond tensile
dumbbell-shaped specimenw=75 mm Cracks mostly occur at the loading
end and finally destroyed[24,25] LS-2 End bond tensile
dumbbell-shaped specimen with circular arc edge
(bolts added)w=75 mm The specimens are broken
in the middle without obvious
stress concentrationNew design 表 3 改性聚氨酯混凝土单轴拉伸试验结果
Table 3. Results of uniaxial tensile experiment for modified polyurethane concrete
Temperature Tensile strength
/MPaPeak strain/% Elastic modulus
/GPaFracture energy density
/(N·mm−2)Compressive strength
/MPa[9]−10℃ 10.28 0.0681 16.86 3.304 81.78 0℃ 10.80 0.0690 16.16 3.929 81.83 15℃ 9.79 0.0958 11.93 4.247 58.87 40℃ 5.87 0.1432 6.23 5.561 39.50 60℃ 3.95 0.4967 1.21 12.843 20.91 表 4 不同温度下的改性聚氨酯混凝土拉压比
Table 4. Tensile-compression ratio of modified polyurethane concrete at different temperatures
Temperature/℃ Tensile
strength
/MPaCompressive
strength/MPaSplitting tensile
strength/MPaTension-compression
ratio W1/%Tension-compression
ratio W2[32]/%Relative error/% −10 10.28 86.67 8.24 11.86 9.51 19.81 0 10.80 79.62 7.93 13.56 9.96 26.55 15 9.79 71.93 7.11 13.61 9.88 27.40 40 5.87 42.97 4.77 13.66 11.1 18.74 60 3.95 26.19 2.67 15.08 10.19 32.43 表 5 改性聚氨酯混凝土五组温度下与温度相关的上升段参数aT和bT的拟合值
Table 5. Fitting values of aT and bT of modified polyurethane concrete under five groups of temperatures
Temperature/°C −10 0 15 40 60 aT 1.30 1.00 1.19 0.51 0.37 bT 1.06 1.00 0.98 1.23 1.36 Note: The correlation coefficients are above 0.95. -
[1] 徐世法, 张业兴, 郭昱涛, 等. 基于贯入阻力测试系统的聚氨酯混凝土压实时机确定方法[J]. 中国公路学报, 2021, 34(7):226-235. doi: 10.3969/j.issn.1001-7372.2021.07.019XU Shifa, ZHANG Yexing, GUO Yutao, et al. Determination of polyurethane concrete compaction timing based on penetration resistance test system[J]. China Journal of Highway and Transport,2021,34(7):226-235(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.07.019 [2] 吴淑印. 钢桥面高延性水泥基材料铺装结构界面特性研究[D]. 东南大学, 2019.WU Shuyin. Study on interfacial characteristics of steel deck pavement with engineered cementitious composites[D]. Southeast University, 2019(in Chinese). [3] ZHANG K X, SUN Q S. Experimental study of reinforced concrete T-beams strengthened with a composite of prestressed steel wire ropes embedded in polyurethane cement (PSWR-PUC)[J]. International Journal of Civil Engineering,2017,16:1109-1123. [4] Vijayaraghavan J, Jeevakkumar R, Venkatesan G, et al. Influence of kaolin and dolomite as filler on bond strength of polyurethane coated reinforcement concrete[J]. Construction and Building Materials,2022,325:126675. doi: 10.1016/j.conbuildmat.2022.126675 [5] 刘小祥, 刘翼, 安珈璇, 等. 连续长玻璃纤维/聚氨酯复合材料的制备与力学性能[J]. 复合材料学报, 2019, 36(3):617-623.LIU Xiaoxiang, LIU Yi, AN Jiaxuan, et al. Preparation and mechanical properties of continuous long glass fiber/polyurethane composites[J]. Acta Materiae Compositae Sinica,2019,36(3):617-623(in Chinese). [6] HONG B, LU G Y, GAO J L. Evaluation of polyurethane dense graded concrete prepared using the vacuum assisted resin transfer molding technology[J]. Construction and Building Materials,2021,269:121340. doi: 10.1016/j.conbuildmat.2020.121340 [7] Aleis K A, LaBarca I K. Evaluation of the URETEK method& of pavement lifting: WI-02-07[R]. Washington, DC: Wisconsin Department of Transportation, 2007. [8] Hussain HK, ZHANG L Z, LIU G W. An experimental study on strengthening reinforced concrete I-beams using new material poly-urethane-cement (PUC)[J]. Construction and Building Materials,2013,40:104-117. doi: 10.1016/j.conbuildmat.2012.09.088 [9] 雷建华, 徐斌, 何旭辉. 改性聚氨酯混凝土受压性能及本构关系研究[J/OL]. 铁道科学与工程学报: 1-12. https://doi.org/10.19713/j.cnki.43-1423/u.T20220218.LEI Jianhua, XU Bin, HE Xuhui. Research on compressive properties and constitutive relation of modified polyurethane concrete[J/OL]. Journal of Railway Science and Engineering: 1-12. https://doi.org/10.19713/j.cnki.43-1423/u.T20220218 (in Chinese). [10] 徐斌, 徐速, 胡风, 等. 一种钢桥面复合式铺装结构及铺装方法: CN109056525 B [P]. 2020-10-27.XU Bin, XU Su, HU Feng, et al. A composite pavement structure and method of steel deck[P]. Zhejiang Province: CN109056525 B, 2020-10-27(in Chinese). [11] 胡淑芳, 杨辉. 基于保通条件下某特大桥钢桥面铺装快速提升改造技术实践[J]. 江西建材, 2021(6):136+138. doi: 10.3969/j.issn.1006-2890.2021.06.086HU Shufang, YANG Hui. Practice of rapid upgrading and reconstruction technology of steel deck pavement of a super large bridge based on the condition of communication[J]. Jiangxi Building Materials,2021(6):136+138(in Chinese). doi: 10.3969/j.issn.1006-2890.2021.06.086 [12] 李博强. 沈阳市长青桥钢桥桥面铺装的对比与选用[J]. 北方交通, 2019(6):25-28.LI Boqiang. Comparison and selection of steel bridge deck pavement of changqing bridge in shenyang[J]. Northern Communications,2019(6):25-28(in Chinese). [13] 李继宏. ECO改性聚氨酯混凝土在寒冷地区钢桥桥面铺装施工中的应用[J]. 北方交通, 2019(6):29-32.LI Jihong. Application of ECO modified polyurethane concrete on steel bridge deck pavement in cold area[J]. Northern Communications,2019(6):29-32(in Chinese). [14] Look K, Heek P, Mark P. Direct tensile tests of supercritical steel fibre reinforced concrete[J]. Fibre Reinforced Concrete:Improvements and Innovations II,2022,36:132-142. [15] 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2022, 40(0):1-16.GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica,2022,40(0):1-16(in Chinese). [16] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58. doi: 10.3969/j.issn.1001-7372.2015.08.007ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport,2015,28(8):50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.08.007 [17] Kamil Z, Andrzej G, Sandra C, et al. Tensile properties of polymer repair materials-effect of test parameters[J]. Advanced Materials Research,2015,1129:445-452. doi: 10.4028/www.scientific.net/AMR.1129.445 [18] Wille K, El-Tawil S, Naaman A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites,2014,48:53-66. doi: 10.1016/j.cemconcomp.2013.12.015 [19] DENG Z Y, LIU X R, YANG X, et al. A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads[J]. Structural Concrete,2021,22:396-409. doi: 10.1002/suco.202000006 [20] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11):3925-3938.GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica,2021,38(11):3925-3938(in Chinese). [21] Donnini J, De Caso y Basalo F, Corinaldesi, V, et al. Fabric-reinforced cementitious matrix behavior at high-temperature: Experimental and numerical results[J]. Composites Part B:Engineering,2017,108:108-121. doi: 10.1016/j.compositesb.2016.10.004 [22] JIN H, YANG S, XU H, et al. Uniaxial tensile performance of PP-ECC: effect of curing temperatures and fly ash contents[J]. KSCE Journal of Civil Engineering,2020,24:3435-3446. doi: 10.1007/s12205-020-0402-x [23] 徐斌, 徐速, 尤其, 等. 树脂混凝土及其制备方法、钢桥面铺装结构及其施工方法: CN113666665 A [P]. 2022-04-12.XU Bin, XU Su, YOU Qi, et al. Resin concrete and its preparation method, steel deck pavement structure and construction method: CN113666665 A [P]. 2022-04-12(in Chinese). [24] 胡翱翔, 梁兴文, 于婧, 等. 超高性能混凝土轴心受拉力学性能试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(9):30-37.HU Aoxiang, LIANG Xingwen, YU Jing, et al. Experimental study of uniaxial tensile characteristics of ultra-high performance concrete[J]. Journal of Hunan University (Natural Sciences),2018,45(9):30-37(in Chinese). [25] Kamal A, Kunieda M, Naoshi U. Nakamura H. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement and Concrete Composites,2008,30:863-71. doi: 10.1016/j.cemconcomp.2008.08.003 [26] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [27] 郝增恒, 王滔, 王民, 等. 钢桥面铺层温度场分析[J]. 公路交通科技, 2018, 35(11):36-43.HAO Zengheng, WANG Tao, WANG Min, et al. Analysis on temperature field of steel bridge deck pavement[J]. Journal of Highway and Transportation Research and Development,2018,35(11):36-43(in Chinese). [28] 徐鸥明, 向顺琳, 杨星皓. 钢桥面铺装层材料应用与发展[J]. 公路, 2022(9):44-50.XU Ouming, XIANG Shunlin, YANG Xinghao. Application and development of steel bridge deck pavement structure and materials[J]. Highway,2022(9):44-50(in Chinese). [29] ZHANG J, SHEN H Z, ZHANG X, et al. Experimental and theoretical investigation of mechanical behavior related to temperature, humidity and strain rate on silane-modified polyurethane sealant[J]. Polymer Testing,2021,103:107370. doi: 10.1016/j.polymertesting.2021.107370 [30] CHEN X L, ZHOU J, LUO Y L, et al. Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer[J]. Physical Chemistry Chemical Physics,2020,22:17620-17631. doi: 10.1039/D0CP03013A [31] LI J, ZHANG J W, CHEN S. Study on dynamic viscoelastic properties and constitutive model of non-water reacted polyurethane grouting materials[J]. Measurement,2021,176:109115. doi: 10.1016/j.measurement.2021.109115 [32] LEI J, FENG F, XU S, et al. Study on mechanical properties of modified polyurethane concrete at different temperatures[J]. Applied Sciences,2022,12:3184. doi: 10.3390/app12063184 -