留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电催化析氧反应的非贵金属催化剂研究进展

姜金池 金彪 孟龙月

姜金池, 金彪, 孟龙月. 基于电催化析氧反应的非贵金属催化剂研究进展[J]. 复合材料学报, 2023, 40(3): 1365-1380. doi: 10.13801/j.cnki.fhclxb.20220819.001
引用本文: 姜金池, 金彪, 孟龙月. 基于电催化析氧反应的非贵金属催化剂研究进展[J]. 复合材料学报, 2023, 40(3): 1365-1380. doi: 10.13801/j.cnki.fhclxb.20220819.001
JIANG Jinchi, JIN Biao, MENG Longyue. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380. doi: 10.13801/j.cnki.fhclxb.20220819.001
Citation: JIANG Jinchi, JIN Biao, MENG Longyue. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380. doi: 10.13801/j.cnki.fhclxb.20220819.001

基于电催化析氧反应的非贵金属催化剂研究进展

doi: 10.13801/j.cnki.fhclxb.20220819.001
基金项目: 国家自然科学基金(22166034;51703192);吉林省科技厅主题引导项目(YDZJ202201ZYTS542);延边大学创新团队项目
详细信息
    通讯作者:

    孟龙月,博士,副教授,博士生导师,研究方向为碳基材料的制备及其电化学传感器研究 E-mail: lymeng@ybu.edu.cn

  • 中图分类号: TB33;TQ426

Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction

Funds: National Natural Science Foundation of China (22166034, 51703192); Theme guidance project of Jilin Provincial Department of science and technology (YDZJ202201ZYTS542); Yanbian University innovation Tean Project
  • 摘要: 在全球变暖和能源危机的背景下,能源问题已成为全球各国战略安全的重要组成部分。氢能作为可持续的新型可再生清洁能源,对缓解全球性能源短缺具有重要意义。在众多制氢候选方案中,电解水制备氢气被认为是最可靠、最可行的途径之一。但在电解过程中,反应动力学极为迟缓的阳极析氧反应(Oxygen evolution reaction,OER)严重制约着整体反应效率。因此,开发成本相对低廉、催化剂性能优异、耐久性好的高效OER电催化剂,从而提高电解水制氢工艺技术的能源转换效果受到了广泛关注。本文首先简要阐述了析氧反应的反应机制及其性能的评价参数,接着对非贵金属催化剂的研究进行分类讨论,并列举了提高催化性能的策略和方法,最后对设计新型催化剂进行展望。

     

  • 图  1  析氧反应(OER)机制:蓝线代表酸性介质和红线代表碱性介质[21]

    Figure  1.  Oxygen evolution reaction (OER) mechanism: Blue line represents acidic medium and red line represents alkaline medium[21]

    M—Metal

    图  2  (a) 极化曲线;(b) Tafel曲线;(c) 电流密度与扫速之间的线性关系图

    Figure  2.  (a) Polarization curve; (b) Tafel curve; (c) Linear relationship between current density and scan rate

    j—Electric current density; RHE—Reversible hydrogen electrode

    图  3  (a) 循环伏安法(CV)循环测试前后的极化曲线;(b) 电压-时间(E-t)/电流-时间(I-t)曲线

    Figure  3.  (a) Polarization curve before and after cyclic voltammetry (CV) cycle test; (b) Potential-time (E-t)/current-time (I-t) curve

    图  4  La基钙钛矿 (a) 和Pr基钙钛矿 (b) 析氧活性的循环伏安图[36]

    Figure  4.  Cyclic voltammetrys of oxygen evolution activity of La based perovskite (a) and Pr based perovskite (b)[36]

    图  5  (a) 含氧空位ZnCo2O4纳米片(OV-ZnCo2O4)合成流程示意图;(b) OV-ZnCo2O4纳米片的SEM图像;(c) ZnCo2O4纳米片、OV-ZnCo2O4纳米片、RuO2的极化曲线[40]

    Figure  5.  (a) Schematic diagram of synthesis process of oxygen-containing vacancy ZnCo2O4 nanosheets (OV-ZnCo2O4); (b) SEM image of OV-ZnCo2O4 nanosheets; (c) Polarization curves of ZnCo2O4 nanosheets, OV-ZnCo2O4 nanosheets and RuO2[40]

    HMT—Hexamethylenetetramine; RT—Room temperature; EG—Ethylene glycol; NSs—Nanosheets

    图  6  (a) FeCo2O4和Co3O4的极化曲线;(b) 相应的Tafel曲线;(c) FeCo2O4的SEM图像[42]

    Figure  6.  (a) Polarization curves of FeCo2O4 and Co3O4; (b) Corresponding Tafel curves; (c) SEM image of FeCo2O4[42]

    图  7  (a) Ni-Fe层状双氢氧化物(NixFey-LDH)合成流程示意图;(b) Ni2Fe1-LDH(Ni/Fe原子比为2:1)的SEM图像;(c) 不同Ni-Fe比例的氢氧化物与IrO2的极化曲线;(d) 相应的Tafel曲线[45]

    Figure  7.  (a) Schematic diagram of synthesis process of Ni-Fe layered double hydroxide (NixFey-LDH); (b) SEM image of Ni2Fe1-LDH (Ni/Fe atom ratio of 2:1); (c) Polarization curves of hydroxides with different Ni-Fe ratios and IrO2; (d) Corresponding Tafel curves[45]

    图  8  ((a), (b)) 多孔磷化钴纳米颗粒(P-CoP-NPs)的SEM图像及TEM图像;(c) 磷化后的多孔Co3O4纳米颗粒(P-Co3O4-NPs)、P-CoP-NPs、泡沫镍(NF)与RuO2的极化曲线;(d) 1000次CV循环前后P-CoP-NPs的极化曲线(插图:10 mA·cm-2电流密度下P-CoP-NPs的计时电位曲线)[49]

    Figure  8.  ((a), (b)) SEM image and TEM image of porous cobalt phosphide nanoparticles (P-CoP-NPs); (c) Polarization curves of porous Co3O4 nanoparticles after phosphating (P-Co3O4-NPs), P-CoP-NPs, nickle foam (NF) and RuO2; (d) Polarization curve of P-CoP-NPs before and after 1000 CV cycles (Inset: Chronopotentiometric curve of P-CoP-NPs at the current density of 10 mA·cm-2)[49]

    图  9  (a) N掺杂亚微米碳管@N掺杂还原氧化石墨烯(N-SMCTs@N-rGO)合成流程示意图;(b) N-SMCTs@N-rGO的SEM图像;(c) N-SMCTs、N-rGO、N-SMCTs@N-rGO与IrO2的极化曲线;(d) 活性界面双位点机制图[56]

    Figure  9.  (a) Schematic diagram of the synthesis process of N-doped submicron carbon tube@N-doped reduced graphene oxide (N-SMCTs@N-rGO); (b) SEM image of N-SMCTs@N-rGO; (c) Polarization curves of N-SMCTs, N-rGO, N-SMCTs@N-rGO and IrO2; (d) Mechanism diagram of active-active interface with dual-site mechanism[56]

    图  10  (a) NiCoFe合金锚定的硼氮共掺杂碳气凝胶(BN/CA-NiCoFe-600)的SEM图像;(b) BN/CA-NiCoFe-600、NiCoFe合金锚定的硼掺杂碳气凝胶(B-CA-NiCoFe-600)、NiCoFe合金锚定的氮掺杂碳气凝胶(N-CA-NiCoFe-600)、氮化硼碳气凝胶(BN/CA)、IrO2 和 RuO2的极化曲线;(c) 相应的Tafel曲线[68]

    Figure  10.  (a) SEM image of B, N co-doped carbon aerogel anchored with NiCoFe alloy (BN/CA-NiCoFe-600); (b) Polarization curves of BN/CA-NiCoFe-600, B doped carbon aerogel anchored with NiCoFe alloy (B-CA-NiCoFe-600), N doped carbon aerogel anchored with NiCoFe alloy (N-CA-NiCoFe-600), boron nitride carbon aeroge (BN/CA), IrO2 and RuO2; (c) Corresponding Tafel curves[68]

    表  1  催化剂的电催化OER活性

    Table  1.   Electrocatalytic OER activity of catalyst

    CatalystElectrolyteOverpotential at a specific current densityTafel slope/(mV·dec−1)Reference
    NiCo2O4-OV-4001.0 mol/L KOH325 mV @ 10 mA·cm−271[38]
    OV-ZnCo2O40.1 mol/L KOH324 mV @ 10 mA·cm−256.9[40]
    CuCo2O4/NF1.0 mol/L KOH220 mV @ 10 mA·cm−292.5[41]
    FeCo2O41.0 mol/L KOH290 mV @ 25 mA·cm−280[42]
    Ni2Fe1-LDHs1.0 mol/L KOH245 mV @ 10 mA·cm−257[45]
    Fe-CoNi-LDHs1.0 mol/L KOH260 mV @ 10 mA·cm−270[46]
    Fe-Co-LDHs/GS1.0 mol/L KOH370 mV @ 10 mA·cm−244[47]
    CoSx/Co1.0 mol/L KOH284 mV @ 10 mA·cm−275.8[48]
    P-CoP-NPs-3501.0 mol/L KOH320 mV @ 10 mA·cm−273.7[49]
    W-Fe-Ni-B/NF1.0 mol/L KOH223 mV @ 10 mA·cm−238.3[50]
    T-GO0.5 mol/L KOH176 mV @ 2 mA·cm−269[53]
    CNT@NCNT0.1 mol/L KOH260 mV @ 10 mA·cm−2[54]
    N-MWCNTs1.0 mol/L NaOH320 mV @ 10 mA·cm−268[55]
    N-SMCTs@N-rGO1.0 mol/L KOH351 mV @ 10 mA·cm−2[56]
    D-NSOCs1.0 mol/L KOH350 mV @ 10 mA·cm−269[61]
    N, S-MWCNTs1.0 mol/L KOH360 mV @ 10 mA·cm−256[62]
    PN-CC1.0 mol/L KOH340 mV @ 10 mA·cm−254.9[63]
    PA-PPy/CC1.0 mol/L KOH340 mV @ 10 mA·cm−254.9[64]
    1D g-CN1.0 mol/L KOH316 mV @ 10 mA·cm−2125[65]
    BRP-g-C3N41.0 mol/L KOH430 mV @ 10 mA·cm−293[66]
    Ni-MWCNTs1.0 mol/L KOH320 mV @ 10 mA·cm−230.08[67]
    BN/CA-NiCoFe-6001.0 mol/L KOH321 mV @ 10 mA·cm−242[68]
    Co-CoO/BC1.0 mol/L KOH300 mV @ 10 mA·cm−273.3[69]
    Co-NCNT1.0 mol/L KOH310 mV @ 10 mA·cm−274.67[70]
    Notes: OV—Oxygen-containing vacancy; CNT—Carbon nanotube; MWCNTs—Multiwalled carbon nanotube; NF—Nickel foam; GS—Graphene sheet; BRP—Black red phosphorus; g-C3N4—Graphite phase carbon nitride; T-GO—Amine group functionalizes graphene oxide; g-CN—Graphitic carbon nitride nanorods; NCNT—Nitrogen-doped carbon nanotube; D-NSOCs—N and S co-doped and oxygen-functionalized carbon materials; PN-CC—Plasma and acid treated carbon cloth.
    下载: 导出CSV
  • [1] CHEN Y, YU Y. Research on the relationship between China's energy consumption and economic growth based on big data[J]. Fresenius Environmental Bulletin,2021,30(9):10652-10658.
    [2] 王则鉴, 洪佳佳, NG Sue-faye, 等. 氧化物钙钛矿的光催化研究进展: CO2还原、水裂解、固氮[J]. 物理化学学报, 2021, 37(6):84-114.

    WANG Zejian, HONG Jiajia, NG Sue-faye, et al. Recent progress of perovskite oxide in emerging photocatalysis landscape: Water splitting, CO2 reduction, and N2 fixation[J]. Acta Physico-Chimica Sinica,2021,37(6):84-114(in Chinese).
    [3] QADIR S A, AL-MOTAIRI H, TAHIR F, et al. Incentives and strategies for financing the renewable energy transition: A review[J]. Energy Reports,2021,7:3590-3606. doi: 10.1016/j.egyr.2021.06.041
    [4] BORETTI A. Continued fossil fuel emissions and cognition impairment[J]. International Journal of Global Warming,2021,24(1):86-90. doi: 10.1504/IJGW.2021.115116
    [5] OGUNKUNLE O, AHMED N A. Overview of biodiesel combustion in mitigating the adverse impacts of engine emissions on the sustainable human-environment scenario[J]. Sustainability,2021,13(10):5465. doi: 10.3390/su13105465
    [6] PRYKHODKO Y, FATYEYEVA K, HESPEL L, et al. Progress in hybrid composite nafion (R)-based membranes for proton exchange fuel cell application[J]. Chemical Engineering Journal,2021,409:127329. doi: 10.1016/j.cej.2020.127329
    [7] MEGIA P J, VIZCAINO A J, CALLES J A, et al. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review[J]. Energy & Fuels,2021,35(20):16403-16415.
    [8] HAEGEL N, KURTZ S. Global progress toward renewable electricity: Tracking the role of solar[J]. IEEE Journal of Photovoltaics,2021,11(6):1335-1342. doi: 10.1109/JPHOTOV.2021.3104149
    [9] PENG X K, LIU Z C, JIANG D. A review of multiphase energy conversion in wind power generation[J]. Renewable & Sustainable Energy Reviews,2021,147:111172.
    [10] ZHAN L, BO Y, LIN T, et al. Development and outlook of advanced nuclear energy technology[J]. Energy Strategy Reviews,2021,34:100630. doi: 10.1016/j.esr.2021.100630
    [11] AMJITH L R, BAVANISH B. A review on biomass and wind as renewable energy for sustainable environment[J]. Chemosphere,2022,293:133579. doi: 10.1016/j.chemosphere.2022.133579
    [12] BUNDSCHUH J, KACZMARCZYK M, GHAFFOUR N, et al. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects[J]. Desalination,2021,508:115035. doi: 10.1016/j.desal.2021.115035
    [13] YANG Y C, JAVANROODI K, NIK V M. Climate change and renewable energy generation in Europe-long-term impact assessment on solar and wind energy using high-resolution future climate data and considering climate uncertainties[J]. Energies,2022,15(1):302. doi: 10.3390/en15010302
    [14] JIANG S Q, SUO H L, ZHANG T, et al. Recent advances in seawater electrolysis[J]. Catalysts,2022,12(2):123. doi: 10.3390/catal12020123
    [15] CUI P Z, YAO D, MA Z Y, et al. Life cycle water footprint comparison of biomass-to-hydrogen and coal-to-hydrogen processes[J]. Science of the Total Environment,2021,773:145056. doi: 10.1016/j.scitotenv.2021.145056
    [16] NGUYEN H L. Metal-organic frameworks for photocatalytic water splitting[J]. Solar RRL,2021,5(7):2100198. doi: 10.1002/solr.202100198
    [17] LI Z X, HU M L, WANG P, et al. Heterojunction catalyst in electrocatalytic water splitting[J]. Coordination Che-mistry Reviews,2021,439:213953. doi: 10.1016/j.ccr.2021.213953
    [18] LIU X M, CUI X Y, DASTAFKAN K, et al. Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions[J]. Journal of Energy Chemistry,2021,53:290-302. doi: 10.1016/j.jechem.2020.04.012
    [19] 李孟婷, 郑星群, 李莉, 等. 碱性介质中氢氧化和析氢反应机理研究现状[J]. 物理化学学报, 2021, 37(9):21-37.

    LI Mengting, ZHENG Xingqun, LI Li, et al. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media[J]. Acta Physico-Chimica Sinica,2021,37(9):21-37(in Chinese).
    [20] LIANG Q H, BROCKS G, BIEBERLE-HUTTER A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions[J]. Journal of Physics-Energy,2021,3(2):026001. doi: 10.1088/2515-7655/abdc85
    [21] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews,2017,46(2):337-365. doi: 10.1039/C6CS00328A
    [22] WANG J J, YUE X Y, YANG Y Y, et al. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review[J]. Journal of Alloys and Compounds,2020,819:153346. doi: 10.1016/j.jallcom.2019.153346
    [23] SINGH C, LIBERMAN I, SHIMONI R, et al. Pristine versus pyrolyzed metal-organic framework-based oxygen evolution electrocatalysts: Evaluation of intrinsic activity using electrochemical impedance spectroscopy[J]. Journal of Physical Chemistry Letters,2019,10(13):3630-3636. doi: 10.1021/acs.jpclett.9b01232
    [24] TAHIR M, PAN L, IDREES F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review[J]. Nano Energy,2017,37:136-157. doi: 10.1016/j.nanoen.2017.05.022
    [25] JAMESH M I, HARB M. Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting-A review[J]. Journal of Energy Chemistry,2021,56:299-342. doi: 10.1016/j.jechem.2020.08.001
    [26] ANANTHARAJ S, EDE S R, KARTHICK K, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment[J]. Energy & Environmental Science,2018,11(4):744-771.
    [27] CAI Z Y, BU X M, WANG P, et al. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A,2019,7(10):5069-5089. doi: 10.1039/C8TA11273H
    [28] CAO L M, LU D, ZHONG D C, et al. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting[J]. Coordination Chemistry Reviews,2020,407:213156. doi: 10.1016/j.ccr.2019.213156
    [29] HU W K, LIU Q, LV T X, et al. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts[J]. Electrochimica Acta,2021,381:138276. doi: 10.1016/j.electacta.2021.138276
    [30] BENCK J D, HELLSTERN T R, KIBSGAARD J, et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis,2014,4(11):3957-3971. doi: 10.1021/cs500923c
    [31] ANANTHARAJ S, KARTHIK P E, KUNDU S. Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: A highly efficient OER electrocatalyst[J]. Catalysis Science & Technology,2017,7(4):882-893.
    [32] CHEN F Y, WU Z Y, ADLER Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mecha-nistic understanding to reactor design[J]. Joule,2021,5(7):1704-1731. doi: 10.1016/j.joule.2021.05.005
    [33] BOCKRIS J O, OTAGAWA T. The electrocatalysis of oxygen evolution on perovskites[J]. Journal of the Electrochemi-cal Society,1984,131(2):290-302. doi: 10.1149/1.2115565
    [34] SUNTIVICH J, MAY K J, GASTEIGER H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science,2011,334(6061):1383-1385. doi: 10.1126/science.1212858
    [35] DIAS J A, ANDRADE M A S, SANTOS H L S, et al. Lanthanum-based perovskites for catalytic oxygen evolution reaction[J]. Chemelectrochem,2020,7(15):3173-3192. doi: 10.1002/celc.202000451
    [36] MATIENZO D D, KUTLUSOY T, DIVANIS S, et al. Benchmarking perovskite electrocatalysts' OER activity as candidate materials for industrial alkaline water electrolysis[J]. Catalysts,2020,10(12):1387. doi: 10.3390/catal10121387
    [37] LIU W, KAMIKO M, YAMADA I, et al. Electrochemical deposition of amorphous cobalt oxides for oxygen evolution catalysis[J]. RSC Advances,2022,12(14):8731-8736. doi: 10.1039/D2RA00492E
    [38] YAO S Z, WEI H S, ZHANG Y, et al. Controlled growth of porous oxygen-deficient NiCo2O4 nanobelts as high-efficiency electrocatalysts for oxygen evolution reaction[J]. Catalysis Science & Technology,2021,11(1):264-271.
    [39] HARADA M, KOTEGAWA F, KUWA M. Structural changes of spinel MCo2O4 (M=Mn, Fe, Co, Ni, and Zn) electrocatalysts during the oxygen evolution reaction investigated by in situ X-ray absorption spectroscopy[J]. ACS Applied Energy Materials,2022,5(1):278-294. doi: 10.1021/acsaem.1c02824
    [40] XIANG K, WU D, FAN Y, et al. Enhancing bifunctional electrodes of oxygen vacancy abundant ZnCo2O4 nanosheets for supercapacitor and oxygen evolution[J]. Chemical Engineering Journal,2021,425:130583. doi: 10.1016/j.cej.2021.130583
    [41] ZHANG P, HE H W. Rational rope-like CuCo2O4 nanosheets directly on ni foam as multifunctional electrodes for supercapacitor and oxygen evolution reaction[J]. Journal of Alloys and Compounds,2020,826:153993. doi: 10.1016/j.jallcom.2020.153993
    [42] BABAR P, PATIL K, BHOITE P, et al. 1D iron cobaltite electrode for efficient electrochemical water oxidation[J]. Materials Letters,2022,312:131663. doi: 10.1016/j.matlet.2022.131663
    [43] YU J, YU F, YUEN M F, et al. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution[J]. Journal of Materials Chemistry A,2021,9(15):9389-9430. doi: 10.1039/D0TA11910E
    [44] ZHOU D J, LI P S, LIN X, et al. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly[J]. Chemical Society Reviews,2021,50(15):8790-8817. doi: 10.1039/D1CS00186H
    [45] CHEN F W, ZHANG S N, LI J J, et al. Precursor-mediated synthesis of interconnected ultrathin NiFe-layered double hydroxides nanosheets for efficient oxygen evolution electrocatalysis[J]. Materials Letters,2022,309:131470. doi: 10.1016/j.matlet.2021.131470
    [46] SHI Y L, LI J Q, ZHANG B Y, et al. Tuning electronic structure of CoNi LDHs via surface Fe doping for achieving effective oxygen evolution reaction[J]. Applied Surface Science,2021,565:150506. doi: 10.1016/j.apsusc.2021.150506
    [47] ENSAFI A A, MANDIAN-TALKHOONCHE B, HEYDARI-SOURESHJANI E, et al. Graphene-like sheets supported Fe-Co layered double hydroxides nanoflakes as an efficient electrocatalyst for both hydrogen and oxygen evolution reaction, a green investigation[J]. Chemosphere,2022,299:134251. doi: 10.1016/j.chemosphere.2022.134251
    [48] BIAN H D, CHEN T Y, CHEN Z X, et al. One-step synthesis of mesoporous cobalt sulfides (CoSx) on the metal substrate as an efficient bifunctional electrode for overall water splitting[J]. Electrochimica Acta,2021,389:138786. doi: 10.1016/j.electacta.2021.138786
    [49] LI Y X, ZHANG Z Q, XIE M G, et al. A facile templating fabrication of porous CoP nanoparticles towards electrocatalytic oxygen evolution[J]. Applied Surface Science,2022,583:152402. doi: 10.1016/j.apsusc.2021.152402
    [50] SUN Y H, ZHAO Y, DENG X Y, et al. An efficient amorphous ternary transition metal boride (WFeNiB) electrocatalyst for oxygen evolution from water[J]. Sustainable Energy & Fuels,2022,6(5):1345-1352.
    [51] WANG J, KONG H, ZHANG J Y, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science,2021,116:100717. doi: 10.1016/j.pmatsci.2020.100717
    [52] LIU H M, LIU Q L, WANG Y R, et al. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review[J]. Chinese Chemical Letters,2022,33(2):683-692. doi: 10.1016/j.cclet.2021.07.038
    [53] SAPNER V S, MULIK B B, DIGRASKAR R, et al. Enhanced oxygen evolution reaction on amine functionalized graphene oxide in alkaline medium[J]. RSC Advances,2019,9(12):6444-6451. doi: 10.1039/C8RA10286D
    [54] TIAN G L, ZHANG Q, ZHANG B S, et al. Toward full expo-sure of "active sites": Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity[J]. Advanced Functional Materials,2014,24(38):5956-5961. doi: 10.1002/adfm.201401264
    [55] PAVODI F, TAVAKKOLI M, LAHTINEN J, et al. Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting[J]. Journal of Catalysis,2017,353:19-27. doi: 10.1016/j.jcat.2017.07.001
    [56] ZHAO J, LI Q Q, ZHANG Q C, et al. Carbon tube-graphene heterostructure with different n-doping configurations induces an electrochemically active-active interface for efficient oxygen electrocatalysis[J]. Chemical Engineering Journal,2022,431:133730. doi: 10.1016/j.cej.2021.133730
    [57] ARAFAT Y, AZHAR M R, ZHONG Y J, et al. Metal-free carbon based air electrodes for zn-air batteries: Recent advances and perspective[J]. Materials Research Bulletin,2021,140:111315. doi: 10.1016/j.materresbull.2021.111315
    [58] THAKUR A K, KURTYKA K, MAJUMDER M, et al. Recent advances in boron- and nitrogen-doped carbon-based materials and their various applications[J]. Advanced Materials Interfaces,2022,9(11):2101964. doi: 10.1002/admi.202101964
    [59] CHATTOPADHYAY J, PATHAK T S, PAK D. Heteroatom-doped metal-free carbon nanomaterials as potential electrocatalysts[J]. Molecules,2022,27(3):670. doi: 10.3390/molecules27030670
    [60] LU Y, SHI H J, SU Y F, et al. Application of element-doped carbonaceous materials in lithium-sulfur batteries[J]. Progress in Chemistry,2021,33(9):1598-1613.
    [61] ZHOU S Y, ZANG J B, GAO H W, et al. Deflagration method synthesizing N, S co-doped oxygen-functionalized carbons as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. Carbon,2021,181:234-245. doi: 10.1016/j.carbon.2021.05.034
    [62] QU K, ZHENG Y, JIAO Y, et al. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting[J]. Advanced Energy Materials,2016,7(9):1602068.
    [63] MEI T T, GAO M, LIU D N, et al. Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science & Technology,2021,23(2):025504.
    [64] HU Q, LI G M, LIU X F, et al. Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation[J]. Angewandte Chemie-International Edition,2019,58(13):4318-4322. doi: 10.1002/anie.201900109
    [65] DESALEGN B Z, JADHAV H S, SEO J G. Highly efficient g-C3N4 nanorods with dual active sites as an electrocatalyst for the oxygen evolution reaction[J]. Chemcatchem,2019,11(12):2870-2878. doi: 10.1002/cctc.201900330
    [66] SHIRAVANI F, TASHKHOURIAN J, HAGHIGHI B. One-step synthesis of graphitic carbon-nitride doped with black-red phosphorus as a novel, efficient and free-metal bifunctional catalyst and its application for electrochemical overall water splitting[J]. Sustainable Energy & Fuels,2021,5(12):3229-3239.
    [67] KANG S, HAN H, MHIN S, et al. Ni-doped carbon nano-tubes fabricated by pulsed laser ablation in liquid as efficient electrocatalysts for oxygen evolution reaction[J]. Applied Surface Science,2021,547:149197. doi: 10.1016/j.apsusc.2021.149197
    [68] LU R Q, SAM D K, WANG W B, et al. Boron, nitrogen co-doped biomass-derived carbon aerogel embedded nickel-cobalt-iron nanoparticles as a promising electrocatalyst for oxygen evolution reaction[J]. Journal of Colloid and Interface Science,2022,613:126-135. doi: 10.1016/j.jcis.2022.01.029
    [69] YANG M J, WU D F, CHENG D J. Biomass-derived porous carbon supported Co-CoO yolk-shell nanoparticles as enhanced multifunctional electrocatalysts[J]. International Journal of Hydrogen Energy,2019,44(13):6525-6534. doi: 10.1016/j.ijhydene.2019.01.155
    [70] SINGH S K, TAKEYASU K, PAUL B, et al. CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction[J]. Sustainable Energy & Fuels,2021,5(3):820-827.
    [71] CUI H J, ZHOU Z, JIA D Z. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons,2017,4(1):7-19. doi: 10.1039/C6MH00358C
    [72] TANG C, ZHANG Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Advanced Materials,2017,29(13):1604103. doi: 10.1002/adma.201604103
    [73] ZHANG Y, ZHU X J, ZHANG G L, et al. Rational catalyst design for oxygen evolution under acidic conditions: Strategies toward enhanced electrocatalytic performance[J]. Journal of Materials Chemistry A,2021,9(10):5890-5914. doi: 10.1039/D0TA11982B
    [74] KARMAKAR A, KARTHICK K, SANKAR S S, et al. A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: A review[J]. Journal of Materials Chemistry A,2021,9(3):1314-1352. doi: 10.1039/D0TA09788H
    [75] ZHU K Y, SHI F, ZHU X F, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction[J]. Nano Energy,2020,73:104761. doi: 10.1016/j.nanoen.2020.104761
    [76] CHAUHAN D S, QURAISHI M A, ANSARI K R, et al. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario[J]. Progress in Organic Coatings,2020,147:105741. doi: 10.1016/j.porgcoat.2020.105741
    [77] NASREEN F, ANWAR A W, AHMAD M A, et al. A facile improved oxidation method for ecological production of graphene oxide[J]. Digest Journal of Nanomaterials and Biostructures,2021,16(1):119-124.
    [78] DONNET J B, DHAMI T L, DONG S, et al. Microwave plasma treatment effect on the surface-energy of carbon-fibers[J]. Journal of Physics D-Applied Physics,1987,20(3):269-275. doi: 10.1088/0022-3727/20/3/005
    [79] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展[J]. 物理学报, 2021, 70(9):22-38.

    ZHANG H B, CHEN Q. Recent progress of non-thermal plasma material surface treatment and functionalization[J]. Acta Physica Sinica,2021,70(9):22-38(in Chinese).
    [80] TIAN W L, ZHENG D C, SUN X, et al. Structural and interfacial engineering of Ni2P/Fe3O4 porous nanosheet arrays for efficient oxygen evolution reaction[J]. Inorganic Che-mistry,2021,60(19):14786-14792. doi: 10.1021/acs.inorgchem.1c02028
    [81] WEISSENBERGER T, MACHOKE A G F, REIPRICH B, et al. Preparation and potential catalytic applications of hierarchically structured zeolites with macropores[J]. Advanced Materials Interfaces,2021,8(4):2001653. doi: 10.1002/admi.202001653
    [82] TACHIBANA N, IKEDA S, YUKAWA Y, et al. Highly porous nitrogen-doped carbon nanoparticles synthesized via simple thermal treatment and their electrocatalytic activity for oxygen reduction reaction[J]. Carbon,2017,115:515-525. doi: 10.1016/j.carbon.2017.01.034
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1127
  • HTML全文浏览量:  596
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-06-28
  • 录用日期:  2022-07-15
  • 网络出版日期:  2022-08-19
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回