留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙

黄仕元 林森焕 董雯 王国华 吴兴良 袁瀚钦

黄仕元, 林森焕, 董雯, 等. 锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 黄仕元, 林森焕, 董雯, 等. 锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙[J]. 复合材料学报, 2022, 40(0): 1-14
Shiyuan HUANG, Senhuan LIN, Wen DONG, Guohua WANG, Xingliang WU, Hanqin YUAN. Manganese-nitrogen co-doped rice husk biochar activated peroxydisulfate to degrade Acid Orange[J]. Acta Materiae Compositae Sinica.
Citation: Shiyuan HUANG, Senhuan LIN, Wen DONG, Guohua WANG, Xingliang WU, Hanqin YUAN. Manganese-nitrogen co-doped rice husk biochar activated peroxydisulfate to degrade Acid Orange[J]. Acta Materiae Compositae Sinica.

锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙

基金项目: 国家自然科学基金项目(No. 51904155)
详细信息
    通讯作者:

    黄仕元,硕士,副教授,硕士生导师,研究方向为:水处理理论与技术 E-mail: 550903597@qq.com

  • 中图分类号: X703

Manganese-nitrogen co-doped rice husk biochar activated peroxydisulfate to degrade Acid Orange

  • 摘要: 为了更好的处理水环境中的偶氮染料(酸性橙,AO7)污染问题,以稻壳、尿素和锰盐为原料,通过热解法制备Mn、N共掺杂生物炭复合材料(Mn-N-BC),活化过二硫酸盐(PDS)降解酸性橙(AO7)染料废水。考察了AO7初始浓度、PDS浓度、催化剂投加量、初始pH值等因素对AO7去除率的影响。结果显示,Mn-N-BC/PDS体系对AO7染料具有较高的去除率,在30 min内可达为98.6%,其表观速率常数(kobs)为0.125 min−1;并且对水环境中的无机阴离子表现出较高的抗性。在3次循环利用后,AO7的去除率仍在75%左右,表明Mn-N-BC对有机污染物的去除具有较高的可重复利用性和稳定性。自由基淬灭研究、XPS分析表明,Mn-N-BC/PDS体系中AO7的降解机制包括自由基途径( · OH、SO4 · )和非自由基途径(O2·、1O2和电子转移),其中非自由基途径为主要作用。

     

  • 1  原始生物炭(BC) (a)、N掺杂生物炭复合材料(N-BC) (b)、Mn掺杂生物炭复合材料(Mn-BC) (c)、Mn、N共掺杂生物炭复合材料(Mn-N-BC)反应前(d)和反应后(e)催化剂的SEM图;Mn-N-BC反应前(f)和反应后(g)的EDS图; Mn-N-BC元素分布图(h)

    1.  SEM images of original biochar (BC) (a), N doped biochar composites (N-BC) (b), Mn doped biochar composites (Mn-BC) (c), Mn and N co-doped biochar composites (Mn-N-BC) before(d) and after (e) reaction;EDS of Mn-N-BC before (f) and after (g) reaction; Mn-N-BC element distribution diagram (h).

    图  2  BC、N-BC、Mn-BC、Mn-N-BC反应前后催化剂XRD图

    Figure  2.  XRD patterns of catalysts BC, N-BC, Mn-BC、Mn-N-BC before and after reactions

    图  3  (a)不同催化剂的FT-IR图;(b) Mn-N-BC反应前后的XPS全谱图;Mn-N-BC反应前后的C1s谱图(c)、N1s谱图(d)和O1s谱图(e).

    Figure  3.  (a) FT-IR spectra of different catalysts; (b) Full spectrum of XPS before and after Mn-N-BC reaction; C1s spectra(c)、N1s spectra (d) and O1s spectra (e) before and after Mn-N-BC reaction

    图  4  (a)不同体系催化剂对AO7去除的影响; (b) 准一级动力学拟合;(c)反应速率常数

    Figure  4.  (a) Effects of different catalysts on AO7 removal; (b) Quasi first order dynamic fitting; (c) reaction rate constant

    kobs—Pseudo first order kinetic constant(min-1) C—Concentration of AO7 after reaction(mg/L); C0—Concentration of AO7 before reaction(mg/L);

    图  5  初始AO7浓度对Mn-N-BC/PDS体系去除AO7的影响

    Figure  5.  Effect of initial AO7 concentration on AO7 removal in Mn-N-BC/PDS system

    图  6  Mn-N-BC催化剂投加量(a)和PDS氧化剂浓度(b)对Mn-N-BC/PDS体系去除AO7的影响

    Figure  6.  The amount of Mn-N-BC catalyst (a) and the concentration (b) of PDS oxidant on the removal of AO7 in Mn-N-BC/PDS system

    图  7  初始pH对Mn-N-BC/PDS体系去除AO7的影响

    Figure  7.  Effect of initial pH on AO7 removal in Mn-N-BC/PDS system

    图  8  共存无机阴离子对Mn-N-BC/PDS体系去除AO7的影响

    Figure  8.  Effect of co-existing inorganic anions on AO7 removal in Mn-N-BC/PDS system

    图  9  (a)不同淬灭剂对对Mn-N-BC/PDS体系去除AO7的影响;(b)准一级动力学线性拟合

    Figure  9.  (a) The effect of different quench agents on AO7 removal in Mn-N-BC/PDS system; (b) Quasi-first-order kinetic linear fitting.

    MeOH—Methanol; TBA—Tert-butyl alcohol; BQ—1,4-benzoquinone; KI—Potassium Iodide; FFA—Furfuryl alcohol

    图  10  Mn-N-BC/PDS体系在DMPO和TEMP作用下的EPR光谱: (a) DOPO-SO4-·和DOPO-·OH;(b) TEPM-1O2

    Figure  10.  EPR spectra of the Mn-N-BC/PDS system with DMPO and TEMP reaction conditions:: (a) DOPO-SO4-·and DOPO-·OH; (b) TEPM-1O2

    图  11  (a)Mn-N-BC反应前后Mn2p谱图(b)Mn-N-BC/PDS体系中AO7降解的可能催化机制

    Figure  11.  (a)Mn2p spectra before and after Mn-N-BC reaction; (b) The possible catalytic mechanism of AO7 degradation in the Mn-N-BC/PDS system.

    图  12  Mn-N-BC/PDS体系去除AO7的回收性能

    Figure  12.  Recovery performance of AO7 removal in Mn-N-BC /PDS system

    表  1  不同材料/PDS体系对AO7的降解动力学参数

    Table  1.   Kinetic parameters of AO7 degradation by different materials /PDS systems

    Catalytic materialkobs/min-1R2
    N-BC0.0020.8710
    Mn-BC0.0100.8902
    Mn-N-BC0.1250.9789
    Notes: R—Gas constant.
    下载: 导出CSV
  • [1] PANG Y, LUO K, TANG L, et al. Carbon-based magnetic nanocomposite as catalyst for persulfate activation: a critical review[J]. Environmental Science and Pollution Research,2019,26(32):32764-32776. doi: 10.1007/s11356-019-06403-4
    [2] 罗才武, 陈晴晴, 张德, 等. 多相催化剂以非自由基路线活化过二硫酸盐的研究进展[J]. 工业催化, 2021, 29(03): 11-15.

    LUO Caiwu, CHEN Qingqing, ZHANG De, et al. Research progress in the activation of persulfate by non-radical route over heterogeneous catalysts[J]. 2021, 29(03): 11-15(in Chinese).
    [3] 王振宇, 黄仕元, 李胜, 等. 可见光活化过二硫酸盐对染料废水的降解研究[J]. 化工新型材料, 2021, 49(10):175-178.

    WANG Zhenyu, HUANG Shiyuan, LI Sheng, et al. Degradation of dye wastewater by activated persulfate with visible light[J]. New Chemical Materials,2021,49(10):175-178(in Chinese).
    [4] 尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(Ⅱ)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J]. 环境科学研究, 2017, 30(07):1105-1111.

    YIN Hanxiong, TANG Yuchao, HUANG Xianhuai, et al. Degradation of direct acid-fast Red 4BS by Persulfate activated by Fe(II)-EDTA enhanced by UV lightt[J]. Study Methodology of Environmental Science,2017,30(07):1105-1111(in Chinese).
    [5] AHN Y Y, YUN E T. Heterogeneous metals and metal-free carbon materials for oxidative degradation through persulfate activation: A review of heterogeneous catalytic activation of persulfate related to oxidation mechanism[J]. Korean Journal of Chemical Engineering,2019,36(11):1767-1779. doi: 10.1007/s11814-019-0398-4
    [6] HAO H, ZhANG Q, QIU Y, et al. Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: Synergism between Fe and Mn[J]. Journal of Water Process Engineering,2020,37:101470. doi: 10.1016/j.jwpe.2020.101470
    [7] HUANG W, XIAO S, ZhONG H, et al. Activation of persulfate by carbonaceous materials: A review[J]. Chemical Engineering Journal,2021:129297.
    [8] 李小娟, 叶兰妹, 廖凤珍, 等. 杂原子掺杂碳材料活化过硫酸盐技术的研究进展[J]. 化工进展, 2021, 40(01):273-281.

    LI Xiaojuan, YE Lanmei, LIAO Fengzhen, et al. Research progress in activation of persulfate by hetero-atom doped carbon materials[J]. Chemical Industry and Engineering Progress,2021,40(01):273-281(in Chinese).
    [9] OH W D, VEKSHA A, CHEN X, et al. Catalytically active nitrogen-doped porous carbon derived from biowastes for organics removal via peroxymonosulfate activation[J]. Chemical Engineering Journal,2019,374:947-957. doi: 10.1016/j.cej.2019.06.001
    [10] LI H, TIAN J, ZHU Z, et al. Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application[J]. Chemical Engineering Journal,2018,354:507-516. doi: 10.1016/j.cej.2018.08.043
    [11] LI X, JIA Y, ZHOU M, et al. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation[J]. Journal of hazardous materials,2020,397:122764. doi: 10.1016/j.jhazmat.2020.122764
    [12] YUAN R, HU L, YU P, et al. Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: a synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants[J]. Chemosphere,2018,210:877-888. doi: 10.1016/j.chemosphere.2018.07.065
    [13] WANG G, NIE X, JI X, et al. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: the synergism between Co and N[J]. Environmental Science:Nano,2019,6(2):399-410. doi: 10.1039/C8EN01231H
    [14] 赵志伟, 陈晨, 梁志杰, 等. 锰氧化物改性生物炭对水中四环素的强化吸附[J]. 农业环境科学学报, 2021, 40(1):194-201.

    ZHAO Zhiwei, CHEN Chen, LIANG Zhijie, et al. Enhanced adsorption of tetracycline from water by manganese oxide modified biochar[J]. Journal of Agro-Environment Science,2021,40(1):194-201(in Chinese).
    [15] WANG H, GUO W, LIU B, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water research,2019,160:405-414. doi: 10.1016/j.watres.2019.05.059
    [16] ZHOU Y, LIU X, XIANG Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling[J]. Bioresource Technology,2017,245:266-273. doi: 10.1016/j.biortech.2017.08.178
    [17] HUANG D, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal,2020,391:123532. doi: 10.1016/j.cej.2019.123532
    [18] 谭笑. 锰改性生物炭材料的制备及其对镉砷污染土壤的修复效果研究[D]. 北京化工大学, 2020.

    TAN Xiao. Preparation of manganese modified biochar and its remediation effect on cadmium and Arsenic contaminated soil[D]. Beijing University of Chemical Technology, 2020. (in Chinese)
    [19] ZHANG K, SUN P, FAYE M C A S, et al. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon,2018,130:730-740. doi: 10.1016/j.carbon.2018.01.036
    [20] Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes
    [21] CAZETTA A L, ZHANG T, SILVA T L, et al. Bone char-derived metal-free N-and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation[J]. Applied Catalysis B:Environmental,2018,225:30-39. doi: 10.1016/j.apcatb.2017.11.050
    [22] LI L, LAI C, HUANG F, et al. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: synergism of bio-char and Fe–Mn binary oxides[J]. Water research,2019,160:238-248. doi: 10.1016/j.watres.2019.05.081
    [23] LI C, WU M, LIU R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-NC nanofibers with embedding FeCo alloy nanoparticles[J]. Applied Catalysis B:Environmental,2019,244:150-158. doi: 10.1016/j.apcatb.2018.11.039
    [24] PIERRI L, GEMENETZI A, MAVROGIORGOU A, et al. Biochar as supporting material for heterogeneous Mn (II) catalysts: Efficient olefins epoxidation with H2O2[J]. Molecular Catalysis,2020,489:110946. doi: 10.1016/j.mcat.2020.110946
    [25] LU Z, LIU B, DAI W, et al. Carbon network framework derived iron-nitrogen co-doped carbon nanotubes for enhanced oxygen reduction reaction through metal salt-assisted polymer blowing strategy[J]. Applied Surface Science,2019,463:767-774. doi: 10.1016/j.apsusc.2018.08.231
    [26] HE C, ZHANG T, SUN F, et al. Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta,2017,231:549-556. doi: 10.1016/j.electacta.2017.01.104
    [27] HUANG D, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal,2020,391:123532. doi: 10.1016/j.cej.2019.123532
    [28] MA W, DU Y, WANG N, et al. ZIF-8 derived nitrogen-doped porous carbon as metal-free catalyst of peroxymonosulfate activation[J]. Environmental Science and Pollution Research,2017,24(19):16276-16288. doi: 10.1007/s11356-017-9191-2
    [29] HAO H, ZHANG Q, QIU Y, et al. Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: synergism between Fe and Mn[J]. Journal of Water Process Engineering,2020,37:101470. doi: 10.1016/j.jwpe.2020.101470
    [30] ZHU K, WANG X, GENG M, et al. Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism[J]. Chemical Engineering Journal,2019,374:1253-1263. doi: 10.1016/j.cej.2019.06.006
    [31] 沈启斌. 二氧化锰改性药渣生物炭的制备及其去除水中四环素的研究[D]. 华南理工大学, 2020.

    SHEN Qibing. Preparation of manganese dioxide modified residue biochar and its removal of tetracycline from water[D]South China University of Technology, 2020(in Chinese).
    [32] HU X, ZHANG H, SUN Z. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by iron, copper and aluminum[J]. Applied Surface Science,2017,392:332-341. doi: 10.1016/j.apsusc.2016.09.047
    [33] QIU Y, ZHANG Q, WANG Z, et al. Degradation of anthraquinone dye reactive blue 19 using persulfate activated with Fe/Mn modified biochar: Radical/non-radical mechanisms and fixed-bed reactor study[J]. Science of The Total Environment,2021,758:143584. doi: 10.1016/j.scitotenv.2020.143584
    [34] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal,2018,334:1502-1517. doi: 10.1016/j.cej.2017.11.059
    [35] CHEN L, JIANG X, XIE R, et al. A novel porous biochar-supported Fe-Mn composite as a persulfate activator for the removal of acid red 88[J]. Separation and Purification Technology,2020,250:117232. doi: 10.1016/j.seppur.2020.117232
    [36] LI H, SHAN C, PAN B. Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway[J]. Science of The Total Environment,2019,675:62-72. doi: 10.1016/j.scitotenv.2019.04.171
    [37] WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species[J]. Water Research,2016,98:190-198. doi: 10.1016/j.watres.2016.04.015
    [38] LONG Y, HUANG Y, WU H, et al. Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight[J]. Chemical Engineering Journal,2019,369:542-552. doi: 10.1016/j.cej.2019.03.097
    [39] QI C, LIU X, MA J, et al. Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants[J]. Chemosphere,2016,151:280-288. doi: 10.1016/j.chemosphere.2016.02.089
    [40] LI X, HUANG X, XI S, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society,2018,140(39):12469-12475. doi: 10.1021/jacs.8b05992
    [41] ZHU S, LI X, KANG J, et al. Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental science & technology,2018,53(1):307-315.
    [42] YU J, FENG H, TANG L, et al. Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring[J]. Progress in Materials Science,2020,111:100654. doi: 10.1016/j.pmatsci.2020.100654
    [43] ZHU K, BIN Q, SHEN Y, et al. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants[J]. Chemical Engineering Journal,2020,402:126090. doi: 10.1016/j.cej.2020.126090
    [44] DUAN P, MA T, YUE Y, et al. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation[J]. Environmental Science:Nano,2019,6(6):1799-1811. doi: 10.1039/C9EN00220K
    [45] WANG Y, XIE Y, SUN H, et al. 2D/2D nano-hybrids of γ-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation[J]. Journal of hazardous materials,2016,301:56-64. doi: 10.1016/j.jhazmat.2015.08.031
  • 加载中
计量
  • 文章访问数:  101
  • HTML全文浏览量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-03-13
  • 修回日期:  2022-02-08
  • 网络出版日期:  2022-04-02

目录

    /

    返回文章
    返回