留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟

程树良 吴灵杰 孙帅 杨硕 辛亚军

程树良, 吴灵杰, 孙帅, 等. X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟[J]. 复合材料学报, 2022, 39(7): 3641-3651. doi: 10.13801/j.cnki.fhclxb.20210903.005
引用本文: 程树良, 吴灵杰, 孙帅, 等. X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟[J]. 复合材料学报, 2022, 39(7): 3641-3651. doi: 10.13801/j.cnki.fhclxb.20210903.005
CHENG Shuliang, WU Lingjie, SUN Shuai, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3641-3651. doi: 10.13801/j.cnki.fhclxb.20210903.005
Citation: CHENG Shuliang, WU Lingjie, SUN Shuai, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3641-3651. doi: 10.13801/j.cnki.fhclxb.20210903.005

X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟

doi: 10.13801/j.cnki.fhclxb.20210903.005
基金项目: 国家自然科学基金 (61690222);燕山大学博士基金项目 (BL17027)
详细信息
    通讯作者:

    辛亚军,博士,副教授,硕士生导师,研究方向为多孔功能性材料  E-mail: xinyajun@ysu.edu.cn

  • 中图分类号: TB383

Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact

  • 摘要: 利用落锤冲击试验研究了X型点阵夹芯结构局部冲击动态特性,并分析了不同参数对其冲击性能的影响。结果表明,冲击失效过程大致经历整体受力、上面板破坏、下面板受力强化和下面板破坏四个典型阶段,冲击速度和面板厚度对X型点阵夹芯结构的冲击极限荷载和吸能量影响较大,芯子厚度对X型点阵夹芯结构的冲击极限荷载和吸能量影响较小,而芯子角度对X型点阵夹芯结构的冲击极限荷载和吸能量有一定影响。利用有限元对X型点阵夹芯结构的局部冲击动态行为进行了数值模拟,通过破坏形态和荷载-时间曲线的对比分析验证了有限元模型的可靠性。

     

  • 图  1  X型点阵夹芯结构的示意图及试件

    Figure  1.  Schematic diagram and specimen of X-type lattice sandwich structure

    W—Wide of the specimen; L—Length of the specimen; H—Height of core layer; δ—Thickness of surface layer; t—Core rod section; θ—Core rod angle

    图  2  落锤冲击实验系统

    Figure  2.  Dropping hammer impact experimental system

    图  3  不同冲击速度下X型点阵夹芯结构的破坏形态

    Figure  3.  Failure modes of X-type lattice sandwich plates at different impact velocities

    A1—Impact velocity 2.5 m/s; A2—Impact velocity 3.5 m/s; A3—Impact velocity 4.5 m/s

    图  4  不同冲击速度下的X型点阵夹芯结构荷载-位移曲线(a)和吸能量-时间曲线(b)对比

    Figure  4.  Comparison of force-displacement curves (a) and energy absorption-time curves (b) of X-type lattice sandwich plates at different impact velocities

    图  5  不同冲击速度下的X型点阵夹芯结构极限荷载(a)和最大吸能量(b)对比

    Figure  5.  Comparison of peak force (a) and maximum energy absorption (b) of X-type lattice sandwich plates under different impact velocities

    图  6  不同面板厚度X型点阵夹芯结构的破坏形态

    Figure  6.  Failure modes of X-type lattice sandwich panels with different panel thicknesses

    B1—Panel thickness 0.8 mm; B2—Panel thickness 1.0 mm; B3—Panel thickness1.2 mm

    图  7  不同面板厚度的X型点阵夹芯结构荷载-时间曲线(a)和吸能量-时间曲线(b)对比

    Figure  7.  Comparison of force-time curves (a) and energy absorption-time curves (b) of of X-type lattice sandwich panels with different panel thicknesses

    图  8  不同面板厚度的X型点阵夹芯结构极限荷载(a)和最大吸能量(b)对比

    Figure  8.  Comparison of peak force (a) and maximum energy absorption (b) of X-type lattice sandwich panels with different panel thicknesses

    图  9  不同芯子厚度X型点阵夹芯结构的破坏形态

    Figure  9.  Failure modes of X-type lattice sandwich plates with different core thicknesses

    C1—Core thickness 15 mm; C2—Core thickness 20 mm; C3—Core thickness 25 mm

    图  10  不同芯子厚度的X型点阵夹芯结构荷载-时间曲线(a)和吸能量-时间曲线(b)对比

    Figure  10.  Comparison of force-time curves (a) and energy absorption-time curves (b) of X-type lattice sandwich plates with different core thicknesses

    图  11  不同芯子厚度的X型点阵夹芯结构极限荷载(a)和最大吸能量(b)对比

    Figure  11.  Comparison of peak force (a) and maximum energy absorption (b) of X-type lattice sandwich plates with different core thicknesses

    图  12  不同芯子角度X型点阵夹芯结构的破坏形态

    Figure  12.  Failure modes of X-type lattice sandwich plates with different core angles

    D1—Core angles 30°; D2—Core angles 45°; D3—Core angles 60°

    图  13  不同芯子角度的荷载-时间曲线(a)和吸能量-时间曲线(b)对比

    Figure  13.  Comparison of force-time curves (a) and energy absorption-time curves (b) of X-type lattice sandwich plates with different core angles

    图  14  不同芯子角度的X型点阵夹芯结构极限荷载(a)和最大吸能量(b)对比

    Figure  14.  Comparison of peak force (a) and maximum energy absorption (b) of X-type lattice sandwich plates at different core angles

    图  15  X型点阵夹芯结构冲击有限元模型

    Figure  15.  Finite element model of X-type lattice sandwich plate under impact

    图  16  三种速度下X型点阵夹芯结构冲击数值模拟和试验最终破坏形态对比

    Figure  16.  Comparison of final failure modes between numerical simulation and test of X-type lattice sandwich plate at three impact speeds

    图  17  A3组X型点阵夹芯结构模拟和试验下的荷载-位移曲线

    Figure  17.  Force-displacement curves of A3 group X-type lattice sandwich panels under simulation and experiment

    图  18  X型点阵夹芯结构冲击试验与模拟荷载-时间曲线对比和吸能量-时间曲线对比

    Figure  18.  Force-time curve comparison and energy absorption-time curve comparison of X-type lattice sandwich plate under impact between test and simulation

    表  1  X型点阵夹芯结构试件参数

    Table  1.   Specimen parameters of X-type lattice sandwich structure

    Specimen labelCore thickness
    H/mm
    Impact velocity
    V/(m∙s−1)
    Core angle
    θ/(°)
    Panel thickness
    δ/mm
    A1152.5451.0+1.0
    A2153.5451.0+1.0
    A3154.5451.0+1.0
    B1154.5450.8+0.8
    B2154.5451.0+1.0
    B3154.5451.2+1.2
    C1154.5451.0+1.0
    C2204.5451.0+1.0
    C3254.5451.0+1.0
    D1154.5301.0+1.0
    D2154.5451.0+1.0
    D3154.5601.0+1.0
    下载: 导出CSV

    表  2  X型点阵夹芯结构各部分的材料参数

    Table  2.   Material parameters of each part of X-type lattice sandwich plate

    CorePanelImpactor
    Density/(kg·m−3)26802700$4.05 \times {10^6}$
    Young’s modulus/GPa69.472.5200
    Poisson’s ratio0.280.330.3
    Yield strength/MPa173153
    下载: 导出CSV
  • [1] 张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J]. 力学进展, 2010, 40(2):157-169. doi: 10.6052/1000-0992-2010-2-J2008-152

    ZHANG Qiancheng, LU Tianjian, WEN Ting. Research progress in preparation and mechanical properties strengthening of light and high strength lattice metal materials[J]. Advances in Mechanics,2010,40(2):157-169(in Chinese). doi: 10.6052/1000-0992-2010-2-J2008-152
    [2] 曾 嵩, 朱荣, 姜炜, 等. 金属点阵材料的研究进展[J]. 材料导报 A: 综述篇, 2012, 26(3):18-35.

    ZENG Song, ZHU Rong, JIANG Wei, et al. Research progress of metal lattice materials[J]. Materials Review A: Review,2012,26(3):18-35(in Chinese).
    [3] 赵冰, 李志强, 侯红亮, 等. 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程, 2016, 45(08):2189-2200.

    ZHAO Bing, LI Zhiqiang, HOU Hongliang, et al. Advances in fabrication of 3D lattice structures of metals[J]. Rare Metal Materials and Engineering,2016,45(08):2189-2200(in Chinese).
    [4] 易长炎, 柏龙, 陈晓红, 等. 金属三维点阵结构拓扑构型研究及应用现状综述[J]. 功能材料, 2017, 10(48):10055-10065.

    YI Changyan, BAI Long, CHEN Xiaohong, et al. A review of the research and application of metal three-dimensional lattice topological configurations[J]. Functional Materials,2017,10(48):10055-10065(in Chinese).
    [5] 陈东, 吴永鹏, 李忠盛, 等. 轻质高强多功能点阵夹层结构研究进展[J]. 装备环境工程, 2020, 17(4):77-84.

    CHEN Dong, WU Yongpeng, LI Zhongsheng, et al. Research progress of lightweight and high-strength multifunctional lattice sandwich structure[J]. Equipment Environmental Engineering,2020,17(4):77-84(in Chinese).
    [6] ZOK F W, WALTNER S A, WEI Z, et al. A protocol for characterizing the structural performance of metallic sandwich panels: Application to pyramidal truss cores[J]. International Journal of Solids Structures,2004,41(22):6249-6271.
    [7] XIONG J, MA L, WU L Z, et al. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures[J]. Composite Structures,2010,92(11):2695-2702. doi: 10.1016/j.compstruct.2010.03.010
    [8] XIONG J, MA L, WU L Z, et al. Mechanical behavior and failure of composite pyramidal truss core sandwich columns[J]. Composites: Part B,2011,42(4):938-945. doi: 10.1016/j.compositesb.2010.12.021
    [9] WEI K, YANG Q, LING B, et al. Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting[J]. Extreme Mechanics Letters,2018,23:41-48. doi: 10.1016/j.eml.2018.07.001
    [10] 张晓刚, 张德龙, 张昊, 等. 三种单层点阵夹芯结构的抗压性能研究[J]. 机械研究与应用, 2020, 33(6):4-6.

    ZHANG Xiaogang, ZHANG Delong, ZHANG Hao, et al. Research on compressive properties of three single-layer lattice sandwich structures[J]. Mechanical Research and Application,2020,33(6):4-6(in Chinese).
    [11] 张甲瑞, 翟光涛, 李文礼. 连续纤维 Octet-truss 点阵夹芯结构制造及抗压缩性能[J]. 复合材料学报, 2021, 38(6):1767-1774.

    ZHANG Jiarui, ZHAI Guangtao, LI Wenli. Fabrication and compression resistance of continuous fiber octet truss lattice sandwich structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1767-1774(in Chinese).
    [12] WANG B, HU J Q, LI Y Q, et al. Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core[J]. Composite Structures,2018,185:619-633. doi: 10.1016/j.compstruct.2017.11.066
    [13] 冀宾, 韩涵, 宋林郁, 等. 面内压缩超轻质点阵夹芯板的优化、试验与仿真[J]. 复合材料学报, 2019, 36(4):1045-1051.

    JI bin, HAN Han, SONG Linyu, et al. Optimization, test and simulation of in-plane compression ultra light lattice sandwich panel[J]. Acta Materiae Compositae Sinica,2019,36(4):1045-1051(in Chinese).
    [14] 王莉娜, 赵月帅, 尹钊, 等. 多层点阵夹心结构承压性能研究[J]. 载人航天, 2020, 26(1):41-47.

    WANG Lina, ZHAO Yueshuai, YIN Zhao, et al. Study on bearing capacity of multilayer lattice sandwich structure[J]. Manned Spaceflight,2020,26(1):41-47(in Chinese).
    [15] 郑权, 冀宾, 李昊, 等. 基于增材制造的多层金字塔点阵夹芯板抗压缩性能[J]. 航空材料学报, 2018, 38(3):77-82. doi: 10.11868/j.issn.1005-5053.2017.000036

    ZHENG Quan, JI bin, LI Hao, et al. Compressive properties of multilayer pyramid lattice sandwich panels based on additive manufacturing[J]. Journal of Aeronautical Materials,2018,38(3):77-82(in Chinese). doi: 10.11868/j.issn.1005-5053.2017.000036
    [16] FENG L J, WEI G T, YU G C, et al. Underwater blast behaviors of enhanced lattice truss sandwich panels[J]. International Journal of Mechanical Sciences,2018,150:1-24.
    [17] 韩笑, 杨丽红, 于国财, 等. 多层梯度点阵夹芯结构抗爆性能研究[J]. 应用力学学报, 2018, 35(1):185-190.

    HAN Xiao, YANG Lihong, YU Guocai, et al. Study on explosion resistance of multilayer gradient lattice sandwich structure[J]. Journal of Applied Mechanics,2018,35(1):185-190(in Chinese).
    [18] ZHANG G Q, WANG B, XIONG J, et al. Response of sandwich structures with pyramidal truss cores under the compression and impact loading[J]. Composite Structures,2013,100(6):451-463.
    [19] 张振华, 钱海峰, 王媛欣. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验[J]. 爆炸与冲击, 2015, 35(06):888-894.

    ZHANG Zhenhua, QIAN Haifeng, WANG Yuanxin. Experimental study on dynamic response of pyramid lattice sandwich plate under impact of ball drops[J]. Explosion and Shock Waves,2015,35(06):888-894(in Chinese).
    [20] 郭锐, 南博华, 周昊. 点阵金属夹层结构抗侵彻实验研究[J]. 振动与冲击, 2016, 35(24):45-50.

    GUO Rui, NAN Bohua, ZHOU Hao. Experimental study on penetration resistance of lattice metal sandwich structures[J]. Journal of Vibration and Shock,2016,35(24):45-50(in Chinese).
    [21] 郭锐, 周昊, 刘荣忠, 等. 陶瓷棒填充点阵金属夹层结构的制备及抗侵彻实验[J]. 复合材料学报, 2016, 33(4):921-928.

    GUO Rui, ZHOU Hao, LIU Rongzhong, et al. Preparation and penetration resistance experiment of ceramic rod filled lattice metal sandwich structure[J]. Acta Materiae Compositae Sinica,2016,33(4):921-928(in Chinese).
    [22] 牟金磊, 李玉江, 张振华, 等. 垂向冲击作用下金字塔点阵夹芯单元结构失效分析[J]. 海军工程大学学报, 2016, 28(6):5-9.

    MOU Jinlei, LI Yujiang, ZHANG Zhenhua, et al. Failure analysis of pyramid lattice sandwich element structure under vertical impact[J]. Journal of Naval University of engineering,2016,28(6):5-9(in Chinese).
    [23] HU J Q, LIU A K, ZHU S W, et al. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores[J]. Composite Structures,2020,251(1):1-16.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  953
  • HTML全文浏览量:  390
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-08-15
  • 录用日期:  2021-08-16
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回