留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速高载下天然橡胶-反式聚异戊二烯橡胶复合材料的耐磨性

庞松 刘欢欢 于洋 吴友平

庞松, 刘欢欢, 于洋, 等. 高速高载下天然橡胶-反式聚异戊二烯橡胶复合材料的耐磨性[J]. 复合材料学报, 2022, 39(6): 2607-2618. doi: 10.13801/j.cnki.fhclxb.20210716.003
引用本文: 庞松, 刘欢欢, 于洋, 等. 高速高载下天然橡胶-反式聚异戊二烯橡胶复合材料的耐磨性[J]. 复合材料学报, 2022, 39(6): 2607-2618. doi: 10.13801/j.cnki.fhclxb.20210716.003
PANG Song, LIU Huanhuan, YU Yang, et al. Wear resistance of natural rubber-trans-polyisoprene rubber composites under high loads and high speeds[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2607-2618. doi: 10.13801/j.cnki.fhclxb.20210716.003
Citation: PANG Song, LIU Huanhuan, YU Yang, et al. Wear resistance of natural rubber-trans-polyisoprene rubber composites under high loads and high speeds[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2607-2618. doi: 10.13801/j.cnki.fhclxb.20210716.003

高速高载下天然橡胶-反式聚异戊二烯橡胶复合材料的耐磨性

doi: 10.13801/j.cnki.fhclxb.20210716.003
基金项目: 国家自然科学基金
详细信息
    通讯作者:

    吴友平,博士,教授,博士生导师,研究方向为弹性体材料科学与工程 E-mail:wuyp@mail.buct.edu.cn

  • 中图分类号: TQ330.7+2

Wear resistance of natural rubber-trans-polyisoprene rubber composites under high loads and high speeds

  • 摘要: 飞机轮胎在高速高载下使用,其胎面橡胶复合材料耐磨性直接影响轮胎使用寿命。利用实验室自研磨耗机模拟了飞机轮胎在实际行驶过程中受到的高速(> 11 Hz)高载荷(> 1.8 MPa),探究了载荷、转速和炭黑(CB)用量对天然橡胶-反式聚异戊二烯橡胶复合材料(NR-TPI)耐磨性的影响,并结合橡胶磨耗表面形貌和磨屑的形态特征提出了相关影响机制。结果表明,胶料的磨耗随载荷增大而增大,转速对耐磨性的影响小于载荷。当转速从600 r/min增大到800 r/min时,磨耗速率增大,再增大转速,磨耗速率无明显变化。炭黑用量为40或45份的材料磨耗速率接近,但当炭黑用量为50份时,材料的耐磨性显著提升。观察发现磨耗表面出现黏腻的降解层,且磨屑中同时包含微米级的微粒磨屑和大尺寸卷状磨屑,说明高速高载下耐磨性主要取决于表面层降解和降解层被剥离这两个过程的动态循环,前者占主导时主要发生微粒磨耗,后者占主导时起卷磨耗为主要磨耗机制。载荷和转速对耐磨性的影响主要是通过对这两个过程的影响来实现的。

     

  • 图  1  自研橡胶磨耗机示意图

    Figure  1.  Schematic diagram of the homemade rubber abrasion device

    图  2  测试轮的基本参数

    Figure  2.  Basic parameters of test wheel

    d—Diameter; W—Width

    图  3  不同载荷下不同天然橡胶(NR)-反式聚异戊二烯(TPI)复合材料测试轮与磨盘间的压痕

    Figure  3.  Indentation between test wheel and grinding disk under different loads of different natural rubber (NR)-trans-polyisoprene (TPI) composites

    Amount of carbon black used for NP-TPI-1, NP-TPI-2 and NP-TPI-3 is 40, 45 and 50, respectively (Total mass of NR and TPI is 100).

    图  4  不同NR-TPI复合材料的接触面积-载荷曲线

    Figure  4.  Contact area versus load curves of different NR-TPI composites

    A1, A2, A3—Contact area of NP-TPI-1, NP-TPI-2, NP-TPI-3; L—Applied load

    图  5  不同NR-TPI复合材料的磨耗速率-载荷曲线

    Figure  5.  Abrasion rate versus load curves of different NR-TPI composites

    图  6  NP-TPI-1的未降解层、降解层和磨屑的FTIR图谱

    Figure  6.  FTIR spectra of the undegraded part, degradation layer and debris of NP-TPI-1 composites

    图  7  不同载荷下NR-TPI复合材料的微粒磨屑

    Figure  7.  Particle debris of NR-TPI composites under different loads

    图  8  不同载荷下NR-TPI复合材料的卷状磨屑

    Figure  8.  Rolled debris of NR-TPI composites under different loads

    图  9  不同载荷下NR-TPI复合材料的卷状磨屑在总磨耗量中所占比例

    Figure  9.  Proportion of rolled debris in total abrasion of NR-TPI composites under different loads

    图  10  不同载荷下NR-TPI复合材料的磨耗表面

    Figure  10.  Abrasive surface of different NR-TPI composites under different loads

    Frame area in the figure is the sticky oily wear area

    图  11  NR-TPI复合材料的热机械降解和降解层剥离的示意图

    Figure  11.  Schematic diagram of two processes: Thermomechanical degradation and peeling of degradation layer of different NR-TPI composites

    图  12  不同NR-TPI样本的临界应变能

    Figure  12.  Critical strain energies of different NR-TPI composites

    Black new crack surfaces are marked by boxes

    图  13  不同磨盘转速下试验轮的接地频率

    Figure  13.  Ground frequency of test wheel at different abrasive disc speeds

    图  14  不同NR-TPI复合材料的磨耗速率-转速曲线

    Figure  14.  Abrasion rate versus speed curves of different NR-TPI composites

    图  15  不同NR-TPI复合材料的压缩疲劳温升

    Figure  15.  Heat build-up of different NR-TPI composites

    图  16  不同NR-TPI复合材料的储能模量-应变曲线(混炼胶)(a)、储能模量-应变曲线(硫化胶)(b)和损耗因子-应变曲线(硫化胶)(c)

    Figure  16.  Elastic modulus G’ versus strain curves (compounds) (a), elastic modulus G’ versus strain curves (vulcanizates) (b) and loss factor tanδ versus strain curves (vulcanizates) (c) of different NR-TPI composites

    表  1  不同NR-TPI复合材料的力学性能

    Table  1.   Mechanical properties of different NR-TPI composites

    SampleNP-TPI-1NP-TPI-2NP-TPI-3
    Curing time/(m:s) 20:00 20:00 20:00
    Tensile strength/MPa 30.4±0.1 29.0±0.6 28.9±0.4
    Tear strength/(kN·m−1) 85.8±5.4 116.9±1.8 116.7±8.8
    Shore A hardness 66 69 71
    Elongation at break/% 493±10 458±8 428±12
    Stress at 100%/MPa 3.2±0.2 3.5±0 4.3±0.2
    Stress at 300%/MPa 17.4±0.3 18.6±0 20.9±0.6
    下载: 导出CSV

    表  2  600 r/min下不同NR-TPI复合材料的热机械降解与降解层剥离过程相对快慢的条件

    Table  2.   Conditions for relative speed of two processes: Thermomechanical degradation and peeling of degradation layer of different NR-TPI composites at 600 r/min

    SampleConditions for (a) Degradation ≫ peelingConditions for (b) Degradation > peelingConditions for (c) Degradation < peeling
    NP-TPI-1 Load≤20 kg 20 kg<Load≤25 kg, Load≥35 kg 25 kg<Load<35 kg
    NP-TPI-2 Load≤20 kg 20 kg<Load≤25 kg, Load≥35 kg 25 kg<Load<35 kg
    NP-TPI-3 Load≤20 kg 20 kg<Load≤25 kg Load>25 kg
    Notes: (a), (b), (c) are from the schematic diagram in Fig. 11.
    下载: 导出CSV
  • [1] GENT A, PULFORD C. Mechanisms of rubber abrasion[J]. Journal of Applied Polymer Science,1983,28(3):943-960. doi: 10.1002/app.1983.070280304
    [2] GENT A, NAH C. Abrasion of rubber by a blade abrader: Effect of blade sharpness and test temperature for selected compounds[J]. Rubber Chemistry and Technology,1996,69(5):819-833. doi: 10.5254/1.3538405
    [3] WU J, CHEN L, WANG Y, et al. Effect of temperature on wear performance of aircraft tire tread rubber[J]. Polymer Testing,2019,79:106037. doi: 10.1016/j.polymertesting.2019.106037
    [4] WU Y P, ZHOU Y, LI J L, et al. A comparative study on wear behavior and mechanism of styrene butadiene rubber under dry and wet conditions[J]. Wear,2016,356-357:1-8. doi: 10.1016/j.wear.2016.01.025
    [5] HAKAMI F, PRAMANIK A, RIDGWAY N, et al. Developments of rubber material wear in conveyer belt system[J]. Tribology International,2017,111:148-158. doi: 10.1016/j.triboint.2017.03.010
    [6] LANG A, KLÜPPEL M. Influences of temperature and load on the dry friction behaviour of tire tread compounds in contact with rough granite[J]. Wear,2017,380:15-25.
    [7] HUANG M, GUIBERT M, THÉVENET J, et al. A new test method to simulate low-severity wear conditions experienced by rubber tire materials[J]. Wear,2018,410-411:72-82. doi: 10.1016/j.wear.2018.06.004
    [8] NGUYEN V H, ZHENG D, SCHMERWITZ F, et al. An advanced abrasion model for tire wear[J]. Wear,2018,396-397:75-85. doi: 10.1016/j.wear.2017.11.009
    [9] FUKAHORI Y, GABRIEL P, LIANG H, et al. A new generalized philosophy and theory for rubber friction and wear[J]. Wear,2020,446-447:203166.
    [10] SCHALLAMACH A. Abrasion pattern on rubber[J]. Rubber Chemistry and Technology,1953,26(1):230-241. doi: 10.5254/1.3539800
    [11] SCHALLAMACH A. Friction and abrasion of rubber[J]. Wear,1958,1(5):384-417. doi: 10.1016/0043-1648(58)90113-3
    [12] SOUTHERN E, THOMAS A. Studies of rubber abrasion[J]. Rubber Chemistry and Technology,1979,52(5):1008-1018. doi: 10.5254/1.3535249
    [13] FUKAHORI Y, YAMAZAKI H. Mechanism of rubber abrasion: Part I: Abrasion pattern formation in natural rubber vulcanizate[J]. Wear,1994,171(1-2):195-202. doi: 10.1016/0043-1648(94)90362-X
    [14] FUKAHORI Y, YAMAZAKI H. Mechanism of rubber abrasion: Part 2. General rule in abrasion pattern formation in rubber-like materials[J]. Wear,1994,178(1-2):109-116. doi: 10.1016/0043-1648(94)90135-X
    [15] MATHEW N, DE S. Scanning electron microscopy studies in abrasion of NR/BR blends under different test conditions[J]. Journal of Materials Science,1983,18(2):515-524. doi: 10.1007/BF00560641
    [16] GROSCH K. The speed and temperature dependence of rubber friction and its bearing on the skid resistance of tires[J]. The Physics of Tire Traction: Springer,1974:143-165.
    [17] THAVAMANI P, BHOWMICK A K, KHASTGIR D. Effect of ageing on strength and wear of tank track pad compounds[J]. Wear,1993,170(1):25-32. doi: 10.1016/0043-1648(93)90347-O
    [18] PULFORD C. Antioxidant effects during blade abrasion of natural rubber[J]. Journal of Applied Polymer Science,1983,28(2):709-713. doi: 10.1002/app.1983.070280225
    [19] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [20] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形, 直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Determination of tear strength of vulcanized or thermoplastic rubber (trousers, right angle and crescent specimens): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [21] DILEEP P, NARAYANANKUTTY SK. Styrenated phenol modified nanosilica for improved thermo-oxidative and mechanical properties of natural rubber[J]. Polymer Testing,2020,82:106302. doi: 10.1016/j.polymertesting.2019.106302
    [22] PANG S, YU Y, ZHANG L, et al. Adjusting silica/rubber interfacial interactions and properties via the click reactions between liquid polybutadiene and silane[J]. Composites Science and Technology,2021:108903.
    [23] LUO K, YOU G, ZHAO X, et al. Synergistic effects of antioxidant and silica on enhancing thermo-oxidative resistance of natural rubber: Insights from experiments and molecular simulations[J]. Materials & Design,2019,181:107944.
    [24] LIN J, LUO Y, ZHONG B, et al. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber[J]. Applied Surface Science,2018,441:798-806. doi: 10.1016/j.apsusc.2018.02.086
    [25] LUO K, YOU G, ZHANG S, et al. Antioxidation behavior of bonded primary-secondary antioxidant/styrene-butadiene rubber composite: Experimental and molecular simulation investigations[J]. Polymer,2020,188:122143. doi: 10.1016/j.polymer.2019.122143
    [26] YAN H, ZHANG L, LIU L, et al. Investigation of the external conditions and material compositions affecting the formation mechanism and size distribution of tire wear particles[J]. Atmospheric Environment,2021,244:118018. doi: 10.1016/j.atmosenv.2020.118018
    [27] FRÖHLICH J, NIEDERMEIER W, LUGINSLAND H D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[J]. Composites Part A: Applied Science and Manufacturing,2005,36(4):449-460. doi: 10.1016/j.compositesa.2004.10.004
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  332
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-06-29
  • 录用日期:  2021-07-02
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回