Preparation of NiCo2S4 nanomaterials and their electrochemical properties
-
摘要: 采用溶剂热方法制备出Co-MOF前驱体,通过Ni2+水解刻蚀前驱体得到空心NiCo-LDH材料,再将其高温煅烧硫化得到NiCo2S4材料。借助金属有机框架的特性使得NiCo2S4材料有着更加优异的性能。电化学数据表明,NiCo2S4材料1 A·g−1的电流密度下具有204.8 mA·h·g−1(
1843.6 F·g−1)的高比容量,当电流密度增加到10 A·g−1时,其容量依然有着最初的50.9%。最后,以活性炭为负极,NiCo2S4材料为正极组装成为了混合型超级电容器,HSC装置在800 W·kg−1的功率密度下有着38 W·h·kg−1的能量密度并且在10 A·g−1的电流密度下循环5000 圈后依然有着71.4%的容量保持率。Abstract: The Co-MOF precursor was prepared by solvothermal method, and the hollow NiCo-LDH material was obtained by hydrolyzing and etching the precursor with Ni2+, and then NiCo2S4 material was obtained by high temperature calcination and sulfurization. The properties of the metal-organic framework make the NiCo2S4 material have more excellent performance. The electrochemical data show that the NiCo2S4 material has a high specific capacity of 204.8 mA·h·g−1 (1843.6 F·g−1) at a current density of 1 A·g−1, and when the current density is increased to 10 A·g−1, its capacity is still 50.9% of the initial capacity. Finally, a hybrid supercapacitor was assembled using activated carbon as the negative electrode and NiCo2S4 material as the positive electrode, and the HSC device had an energy density of 38 W·h·kg−1 at a power density of 800 W·kg−1 and a capacity retention rate of 71.4% after5000 cycles at a current density of 10 A·g−1.-
Key words:
- Co-MOF /
- NiCo2S4 /
- Supercapacitors /
- Electrochemistry /
- Metal-organic framework
-
图 4 (a-b)NiCo2S4不同倍镜下的TEM图像;(c)NiCo2S4选取区域的晶格条纹;(d)NiCo2S4样品的选区电子衍射图;(e)NiCo2S4的Mapping图所选区域;(f-h)NiCo2S4所含元素各自的Mapping图
Figure 4. (a-b) TEM images of NiCo2S4 at different magnifications; (c) lattice fringes in selected regions of NiCo2S4; (d) electron diffractograms of selected regions of NiCo2S4 samples; (e) selected regions of the Mapping map of NiCo2S4; (f-h) Mapping maps of the respective elements contained in NiCo2S4
图 7 (a) NiCo2S4、NiCo-LDH、CoS2材料在50 mV·s−1扫描速率下的CV曲线(b) NiCo2S4在不同扫描速率下的CV曲线;(c) NiCo2S4、NiCo-LDH、CoS2材料1 A·g−1时的GCD曲线;(d) NiCo2S4的GCD曲线;(e) NiCo2S4、NiCo-LDH、CoS2材料的倍率曲线;(f)NiCo2S4的电化学阻抗谱
Figure 7. (a) CV curves of NiCo2S4, NiCo-LDH, and CoS2 materials at a scan rate of 50 mV·s−1 (b) CV curves of NiCo2S4 at different scan rates; (c) GCD curves of NiCo2S4, NiCo-LDH, and CoS2 materials at 1 A·g−1; (d) GCD curves of NiCo2S4; (e) multiplicity curves of NiCo2S4, NiCo-LDH, and CoS2 materials; (f) electrochemical impedance spectra of NiCo2S4
图 8 (a) NiCo2S4 CV曲线中峰值电流的位置;(b) NiCo2S4峰值电流与扫描速率对数之间的关系图;(c) NiCo2S4的赝电容贡献率图;(d) NiCo2S4在10 A·g−1下的循环性能
Figure 8. (a) Position of peak current in NiCo2S4 CV curve; (b) Plot of NiCo2S4 peak current versus logarithm of scan rate; (c) Plot of pseudo capacitance contribution of NiCo2S4; (d) Cycling performance of NiCo2S4 at 10 A·g−1
图 9 (a)混合型超级电容器的示意图;(b) NiCo2S4和AC在50 mV·s−1下的CV曲线;(c) NiCo2S4//AC在50 mV·s−1不同电压下的CV曲线;(d)不同的扫描速率下HSC装置的CV曲线
Figure 9. (a) Schematic of hybrid supercapacitor; (b) CV curves of NiCo2S4 and AC at 50 mV·s−1; (c) CV curves of NiCo2S4//AC at different voltages of 50 mV·s−1; and (d) CV curves of the HSC device at different scan rates
-
[1] CHANG L, SAYDALIEV H B, MEO M S, et al. How renewable energy matter for environmental sustainability: Evidence from top-10 wind energy consumer countries of European Union[J]. Sustainable Energy Grids & Networks, 2022, 31: 100716. [2] SHARMA P, KUMAR V. - Current Technology of Supercapacitors: A Review[J]. Journal of Electronic Materials, 2020, 49(6): 3520-3532. doi: 10.1007/s11664-020-07992-4 [3] VOLFKOVICH Y M. - Electrochemical Supercapacitors (a Review)[J]. Russian Journal of Electrochemistry, 2021, 57(4): 311-347. doi: 10.1134/S1023193521040108 [4] WANG W, YUAN B, SUN Q, et al. Application of energy storage in integrated energy systems - A solution to fluctuation and uncertainty of renewable energy[J]. Journal of Energy Storage, 2022, 52: 104812. doi: 10.1016/j.est.2022.104812 [5] ZAKERI B, PAULAVETS K, BARRETO-GOMEZ L, et al. Pandemic, War, and Global Energy Transitions[J]. Energies, 2022, 15(17): 6114. doi: 10.3390/en15176114 [6] GAO D, LUO Z, LIU C, et al. A survey of hybrid energy devices based on supercapacitors[J]. Green Energy & Environment, 2023, 8(4): 972-988. [7] HUANG J, XIE Y, YOU Y, et al. Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization[J]. Advanced Functional Materials, 2023, 33(14): 2213095. doi: 10.1002/adfm.202213095 [8] OLABI A G, ABBAS Q, AL MAKKY A, et al. Supercapacitors as next generation energy storage devices: Properties and applications[J]. Energy, 2022, 248: 123617. doi: 10.1016/j.energy.2022.123617 [9] PENG Y, XU J, XU J, et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications[J]. Advances in Colloid and Interface Science, 2022, 307: 102732. doi: 10.1016/j.cis.2022.102732 [10] ZHAI Z, ZHANG L, DU T, et al. A review of carbon materials for supercapacitors[J]. Materials & Design, 2022, 221: 111017. [11] GAO Y P, HUANG K J. NiCo2S4 materials for supercapacitor applications[J]. Chemistry–An Asian Journal, 2017, 12(16): 1969-1984. doi: 10.1002/asia.201700461 [12] ZHU Y, WU Z, JING M, et al. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors[J]. Journal of Power Sources, 2015, 273: 584-590. doi: 10.1016/j.jpowsour.2014.09.144 [13] SHEN L, YU L, WU H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J]. Nature Communications, 2015, 6: 6694. doi: 10.1038/ncomms7694 [14] THEERTHAGIRI J, SENTHIL R A, NITHYADHARSENI P, et al. Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage[J]. Ceramics International, 2020, 46(10): 14317-14345. doi: 10.1016/j.ceramint.2020.02.270 [15] IQBAL M Z, AZIZ U, AFTAB S, et al. Superior electrochemical performance of bimetallic sulfides as electrode materials for battery supercapacitor applications[J]. Materials Chemistry and Physics, 2023, 309: 128384. doi: 10.1016/j.matchemphys.2023.128384 [16] AMAN S, ALAHMARI S D, KHAN S A, et al. Hydrothermal development of bimetallic sulfide nanostructures as an electrode material for supercapacitor application[J]. Energy & Fuels, 2023, 37(22): 17473-17483. [17] CHEN C, WU M-K, TAO K, et al. Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel–cobalt sulfides for supercapacitors[J]. Dalton Transactions, 2018, 47(16): 5639-5645. doi: 10.1039/C8DT00464A [18] ANSARI A, BADHE R A, GARJE S S. One pot synthesis of bimetallic transition metal sulfide NiFeS2 nanocomposite and its use as a high performance supercapacitor material[J]. Materials Letters, 2020, 281: 128636. doi: 10.1016/j.matlet.2020.128636 [19] GOU J, DU Y, XIE S, et al. Easily-prepared bimetallic metal phosphides as high-performance electrode materials for asymmetric supercapacitor and hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(50): 27214-27223. doi: 10.1016/j.ijhydene.2019.08.221 [20] ZHU M, LU C, MA Y, et al. NiCo-glycolate-derived porous spherical NiCo2S4 for high-performance asymmetric supercapacitors[J]. Applied Organometallic Chemistry, 2023, 37(12): e7301. doi: 10.1002/aoc.7301 [21] LIU H, AN S, SUN X, et al. Multi-layer unbonded nickel foam/carbon nanotube array/Ni-Co bimetallic sulfide as high-performance electrode materials for supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127426. doi: 10.1016/j.colsurfa.2021.127426 [22] MA J, WANG L, YU P, et al. Ni–Co bimetallic sulfide coated with reduced graphene oxide and carbon for high-capacitance supercapacitor[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(6): 4091-4098. doi: 10.1166/jnn.2017.13428 [23] WANG S, ZHANG P, LIU C. Synthesis of hierarchical bimetallic sulfide NiCo2S4 for high-performance supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126334. doi: 10.1016/j.colsurfa.2021.126334 [24] YANG S, XIONG W, WU Z, et al. Rational design and synthesis of multi-shelled NiCo2S4 hollow microspheres for high performance supercapacitors[J]. Journal of Energy Storage, 2021, 44: 103407. doi: 10.1016/j.est.2021.103407 [25] WANG D-G, LIANG Z, GAO S, et al. Metal-organic framework-based materials for hybrid supercapacitor application[J]. Coordination Chemistry Reviews, 2020, 404: 213093. doi: 10.1016/j.ccr.2019.213093 [26] LIU X, SHI C, ZHAI C, et al. Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS applied materials & interfaces, 2016, 8(7): 4585-4591. [27] WANG Y, LIU Y, WANG H, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019, 2(3): 2063-2071. doi: 10.1021/acsaem.8b02128 [28] CHENG S, DU K, WANG X, et al. Fabrication of Hierarchical MOF-Derived NiCo2S4@ Mo-Doped Co-LDH Arrays for High-Energy-Density Asymmetric Supercapacitors[J]. Nanomaterials, 2023, 13(19): 2663. doi: 10.3390/nano13192663 [29] ZHUANG Z, WANG Y, CHEN Z, et al. MOF derived high-density atomic platinum heterogeneous catalyst for C–H bond activation[J]. Materials Chemistry Frontiers, 2020, 4(4): 1158-1163. doi: 10.1039/D0QM00040J [30] TANG Y, CHEN S, MU S, et al. Synthesis of capsule-like porous hollow nanonickel cobalt sulfides via cation exchange based on the Kirkendall effect for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9721-9732. [31] DUAN X, PAN N, SUN C, et al. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting[J]. Journal of Energy Chemistry, 2021, 56: 290-298. doi: 10.1016/j.jechem.2020.08.007 [32] ZANG Y, LUO H, ZHANG H, et al. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(2): 1189-1198. doi: 10.1021/acsaem.0c02465 [33] DING M, WEI Z, HUANG S, et al. Electrochemical Properties of NiCo2S4/rGO Nanocomposites Synthesized by Hydrothermal Method[J]. Current Nanoscience, 2022, 18(3): 399-407. doi: 10.2174/1573413717666210826115543
计量
- 文章访问数: 57
- HTML全文浏览量: 38
- 被引次数: 0