留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料壁板后屈曲设计与分析技术研究进展

陈向明 李新祥 柴亚南 陈普会 孙侠生

陈向明, 李新祥, 柴亚南, 等. 复合材料壁板后屈曲设计与分析技术研究进展[J]. 复合材料学报, 2024, 41(9): 1-28. doi: 10.13801/j.cnki.fhclxb.20240611.003
引用本文: 陈向明, 李新祥, 柴亚南, 等. 复合材料壁板后屈曲设计与分析技术研究进展[J]. 复合材料学报, 2024, 41(9): 1-28. doi: 10.13801/j.cnki.fhclxb.20240611.003
CHEN Xiangming, LI Xinxiang, CHAI Yanan, et al. Research progress in post-buckling design and analysis techniques for composite stiffened panel[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 1-28. doi: 10.13801/j.cnki.fhclxb.20240611.003
Citation: CHEN Xiangming, LI Xinxiang, CHAI Yanan, et al. Research progress in post-buckling design and analysis techniques for composite stiffened panel[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 1-28. doi: 10.13801/j.cnki.fhclxb.20240611.003

复合材料壁板后屈曲设计与分析技术研究进展

doi: 10.13801/j.cnki.fhclxb.20240611.003
基金项目: 国家自然科学基金 (12272358);民机科研(MJ-2015-F-038)
详细信息
    通讯作者:

    陈向明,工学博士,研究员,研究方向为复合材料结构强度技术 E-mail: chenxiangming@cae.ac.cn

  • 中图分类号: V22; TB332

Research progress in post-buckling design and analysis techniques for composite stiffened panel

Funds: National Natural Science Foundation of China (12272358); Civil Aircraft Research Project (MJ-2015-F-038)
  • 摘要: 复合材料的大规模应用是航空飞行器机体加筋壁板结构减重的主要手段,但因过于保守的设计准则使得结构减重效果并不理想。薄壁加筋壁板结构通常具有很长的后屈曲承载历程,但因缺乏后屈曲设计与评估的有效分析方法,目前飞机复合材料加筋壁板几乎都不允许蒙皮在限制载荷以下屈曲,无法充分发挥复合材料的减重特性。本文回顾了复合材料加筋壁板稳定性设计的发展历程,阐述了开展后屈曲设计分析的必要性;围绕工程分析技术与数值分析技术两个方面,详细综述了壁板结构屈曲与后屈曲性能分析与设计方法的研究进展;探讨了影响复合材料壁板屈曲与后屈曲性能的主要因素,并论述了屈曲疲劳、损伤/缺陷、湿热环境等对结构性能的影响;最后总结了复合材料加筋壁板后屈曲设计与分析技术总体现状,展望了未来技术发展趋势。

     

  • 图  1  加筋壁板的典型失效模式[13]

    Figure  1.  Typical failure modes of stiffened panels[13]

    图  2  欧盟框架计划项目复合材料壁板设计理念[2, 7]

    Figure  2.  Design concept of composite stiffened panels for the EU framework program project [2, 7]

    图  3  在轴向载荷与面内剪切复合载荷作用下加筋板的工程设计/分析流程[18]

    Figure  3.  Design/analysis procedure for stiffened panels under combined uniaxial load and shear[18]

    图  4  平板的线性和非线性屈曲[33]

    Figure  4.  Linear and nonlinear buckling of plate[33]

    图  5  全局-局部耦合有限元模型[124]

    Figure  5.  Global-local coupled finite element model[124]

    图  6  全局-局部双向松耦合模型[127]

    Figure  6.  Global-local bidirectional loose coupling model[127]: (a) The coupling concept between global and local models; (b) Bidirectional loosely coupled program flowchart

    图  7  基于数值和半解析法的加筋壁板后屈曲界面失效快速计算流程[133]

    Figure  7.  Rapid calculation process for post-buckling interface failure of stiffened panels based on numerical and semi-analytical methods

    图  8  加筋壁板后屈曲分析的积木式验证[124]

    Figure  8.  Building block validation of post-buckling analysis[124]

    图  9  多层级分析评估的积木式验证案例[124]

    Figure  9.  Verification and validation building block for piecewise analysis evaluation cases [124]

    图  10  损伤面积对加筋板屈曲(a)和极限载荷(b)的影响[165]

    Figure  10.  Effect of damage area on buckling (a) and ultimate load (b) of stiffened panels[165]

    图  11  加筋壁板筋条边缘冲击示意图[174]

    Figure  11.  Schematic diagram of edge impact of stiffener in stiffened panels: (a) T-shaped stiffener; (b) I-shaped stiffener[174]

    图  12  UT扫描测量的损伤扩展情况[178]

    Figure  12.  Damage extension measured by UT scanning[178]

    表  1  典型边界矩形平板屈曲分析中常用的位移函数

    Table  1.   Common displacement functions used in buckling analysis of plates under typical boundaries

    Number Boundary condition Displacement function Ref.
    1 SSSS $w = \displaystyle\sum\limits_{m = 1}^m {\displaystyle\sum\limits_{n = 1}^n {{w_{mn}}\sin \dfrac{{m{\text{π}} x}}{a}\sin \dfrac{{n{\text{π}} y}}{b}} } $ [18-20, 27]
    2 SSCC $w = \displaystyle\sum\limits_{m = 1}^m {\displaystyle\sum\limits_{n = 1}^n {{w_{mn}}\sin \dfrac{{m{\text{π}} x}}{a}\left[ {\cos \dfrac{{(n - 1){\text{π}} y}}{b} - \cos \dfrac{{(n + 1){\text{π}} y}}{b}} \right]} } $ [18, 21]
    3 CCSS $w = \displaystyle\sum\limits_{m = 1}^m {\displaystyle\sum\limits_{n = 1}^n {{w_{mn}}\left[ {\cos \dfrac{{(m - 1){\text{π}} x}}{a} - \cos \dfrac{{(m + 1){\text{π}} x}}{a}} \right]\sin \dfrac{{n{\text{π}} y}}{b}} } $ [18, 21]
    4 CCCC $w = \displaystyle\sum\limits_{m = 1}^m {\displaystyle\sum\limits_{n = 1}^n {{w_{mn}}\left[ {\cos \dfrac{{(m - 1){\text{π}} x}}{a} - \cos \dfrac{{(m + 1){\text{π}} x}}{a}} \right]\left[ {\cos \dfrac{{(n - 1){\text{π}} y}}{b} - \cos \dfrac{{(n + 1){\text{π}} y}}{b}} \right]} } $ [18, 21]
    5 SSSF $w = \left( {{C_1}y + {C_2}{y^2} + {C_3}{y^3} + \cdots + {C_n}{y^n}} \right)\sin \dfrac{{m{\text{π}} x}}{a}$ [18]
    6 CCCF $w = \left( {{C_1}y + {C_2}{y^2} + {C_3}{y^3} + \cdots + {C_n}{y^n}} \right){\sin ^2}\left( {\dfrac{{m{\text{π}} x}}{a}} \right)$ [22]
    7 SSEE $w = \left[ {{C_1}\sin \left( {\dfrac{{{\text{π}} y}}{b}} \right) + {C_2}{{\sin }^2}\left( {\dfrac{{{\text{π}} y}}{b}} \right)} \right]\sin \left( {\dfrac{{m{\text{π}} x}}{a}} \right)$ [23]
    $w = \left( {{C_1}y + {C_2}{y^2} + {C_3}{y^3} + {C_4}{y^4}} \right)\sin \dfrac{{m{\text{π}} x}}{a}$ [24]
    Notes:Boundary condition-- S: Simply supported; C: Clamped; F: Free; E: (rotation) Elastic restrained; a, b, w—length, width and out-of-plane displacement of the plate, w is a function of the in-plane coordinates x and y; wmn, C1, C2, …, Cn—unknown displacement coefficients.
    下载: 导出CSV
  • [1] 崔德刚. 浅谈民用大飞机结构技术的发展[J]. 航空学报, 2008, 29(3): 573-582. doi: 10.3321/j.issn:1000-6893.2008.03.008

    CUI Degang. Structure technology development of large commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 573-582(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.008
    [2] DEGENHARDT R, CASTRO S G P, ARBELO M A, et al. Future structural stability design for composite space and airframe structures[J]. Thin-Walled Structures, 2014, 81(7): 29-38.
    [3] HAO P, WANG B, TIAN K, et al. Integrated optimization of hybrid stiffness stiffened shells based on sub-panel elements[J]. Thin-Walled Structures, 2016, 103: 171-182. doi: 10.1016/j.tws.2016.01.027
    [4] GE D, MO Y, HE B, et al. Experimental and numerical investigation of stiffened composite curved panel under shear and in-plane bending[J]. Composite Structures, 2016, 137: 185-195. doi: 10.1016/j.compstruct.2015.09.049
    [5] GLISZCZYNSKI A, KUBIAK T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression[J]. Composite Structures, 2017, 169: 52-61. doi: 10.1016/j.compstruct.2016.10.029
    [6] ZIMMERMANN R, ROLFES R. POSICOSS—improved postbuckling simulation for design of fibre composite stiffened fuselage structures[J]. Composite Structures, 2006, 73: 171-174. doi: 10.1016/j.compstruct.2005.11.041
    [7] DEGENHARDT R, ROLFES R, ZIMMERMANN R, et al. COCOMAT—improved material exploitation of composite airframe structures by accurate simulation of postbuckling and collapse[J]. Composite Structures, 2006, 73: 175-178. doi: 10.1016/j.compstruct.2005.11.042
    [8] DEGENHARDT R, KLING A, ROHWER K, et al. Design and analysis of stiffened composite panels including post-buckling and collapse[J]. Computers and Structures, 2008, 86: 919-929. doi: 10.1016/j.compstruc.2007.04.022
    [9] 高志刚, 冯宇, 马斌麟, 等. 航空复合材料加筋板压缩屈曲及后屈曲力学性能[J]. 航空材料学报, 2020, 40(1): 53-61.

    GAO Zhigang, FENG Yu, HE Yu-ting, SHAO Qing, et al. Buckling and post-buckling performance of aeronautic composite stiffened panel under compression[J]. Journal of Aerospace Power, 2014, 29(12): 2905-2913(in Chinese).
    [10] MERT M, KAYRAN A. Post-buckling load redistribution of stiffened panels in aircraft wing box structures[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2016.
    [11] EUROPEAN COMMISSION. Design and validation of imperfection tolerant laminated shell structures[EB/OL]. (1994-9-21)[2024-03-15]. https://cordis.europa.eu/project/id/BRE20962.
    [12] EUROPEAN COMMISSION. More affordable aircraft structure through extended, integrated, and mature numerical sizing[EB/OL]. (2016-9)[2024-03-15]. https://trimis.ec.europa.eu/project/more-affordable-aircraft-structure-through-extended-integrated-and-mature-numerical-sizing.
    [13] PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2313-2341. doi: 10.1177/0021998312454478
    [14] TuDelft OpenCourseWare[DB/OL]. [2024-03-15]. https://ocw.tudelft.nl/wp-content/uploads/Lecture_9_-_Inter-rivet_buckling_stiffened_panels_01.pdf.
    [15] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science & Technology, 2002, 62(12-13): 1633-1662.
    [16] ALMROTH B O, BROGAN F W, STANLEY G W. User's Manual for STAGS, Volumes 1 and 2, NASA Contractor Report 165670[R]. Hampton: NASA, 1978.
    [17] SINGER J, ARBOCZ J, WELLER T. Buckling experiments: Experimental methods in buckling of thin-walled structures: Shells, built-up structures, composites and additional topics[M]. New Jersey: John Wiley & Sons, Inc., 2002.
    [18] KASSAPOGLOU C. Design and analysis of composite structures: With applications to aerospace structures[M]. New Jersey: John Wiley & Sons, Inc., 2013.
    [19] TUNG T K, SURDENAS J. Buckling of rectangular orthotropic plates under biaxial loading[J]. Journal of Composite Materials, 1987, 21: 124-128. doi: 10.1177/002199838702100203
    [20] LIBOVE C. Buckle pattern of biaxially compressed simply supported orthotropic rectangular plates[J]. Journal of Composite Materials, 1983, 17: 45-48. doi: 10.1177/002199838301700104
    [21] ESDU. ESDU 81047 Buckling of flat rectangular plates (isotropic, orthotropic and laminated composite plates and sandwich panels)[DB/OL]. [2024-03-15]. https://www.esdu.com/cgi-bin/ps.pl?t=doc&p=esdu_81047c.
    [22] KIM H, KWON H, KEUNE J. Buckling initiation and disbond growth in adhesively bonded composite flanges[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2012.
    [23] 张长兴. 复合材料加筋壁板结构的稳定性分析与优化设计[D]. 北京: 中国航空研究院, 2018.

    ZHANG Changxing. Stability analysis and optimization design of composite reinforced wall panel structures[D] Beijing: Chinese Aeronautical Establishment, 2018(in Chinese).
    [24] 陈金睿, 陈普会, 孔斌, 等. 考虑筋条扭转弹性支持的轴压复合材料加筋板局部屈曲分析方法[J]. 南京航空航天大学学报, 2017, 49(1): 76-82.

    CHEN Jinrui, CHEN Puhui, KONG Bin, et al. Local buckling analysis of axially compressed stiffened laminated panels considering rotational restraint of stiffeners[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(1): 76-82(in Chinese).
    [25] SHUFRIN I, RABINOVITCH O, EISENBERGER M. Buckling of symmetrically laminated rectangular plates with general boundary conditions: A semi analytical approach[J]. Composite Structures, 2008, 82(4): 521-531. doi: 10.1016/j.compstruct.2007.02.003
    [26] FAZZOLARI F A, BANERJEE J R, BOSCOLO M. Buckling of composite plate assemblies using higher order shear deformation theory—An exact method of solution[J]. Thin-Walled Structures, 2013, 71: 18–34.
    [27] WHITNEY J M. Structural analysis of laminated anisotropic plates[M]. New York: CRC Press, 1987.
    [28] WICHITA STATE UNIVERSITY. Composite Materials Handbook (CMH-17), Volume 3. Polymer Matrix Composites: Materials Usage, Design and Analysis[M]. Warrendale: SAE International, 2012: Chapter 9.
    [29] SPIER E E. On experimental versus theoretical incipient buckling of narrow graphite/epoxy plates in compression[C]//21st Structures, Structural Dynamics, & Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 1980: 187-193.
    [30] SPIER E E. Local buckling, postbuckling, and crippling behavior of graphite-epoxy short thin walled compression members[C]//Naval Air Systems Command Report NASCN00019-80-C-0174, June 1981: 22.
    [31] ESDU. ESDU 94007 Elastic buckling of cylindrically curved laminated fibre reinforced composite panels with all edges simply-supported under biaxial loading[DB/OL]. [2024-03-15]. https://www.esdu.com/cgi-bin/ps.pl?t=doc&p=esdu_94007.
    [32] 王震鸣. 复合材料力学与复合材料结构力学[M]. 北京: 机械工业出版社, 1991.

    WANG Zhenming. Mechanics of composite materials and structural mechanics of composite materials[M]. Beijing: Machinery Industry Press, 1991(in Chinese).
    [33] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京: 航空工业出版社, 2002.

    Chinese Aeronautical Establishment. Guidelines for stability analysis of composite structures[M]. Beijing: Aviation Industry Press, 2002(in Chinese).
    [34] 中国航空研究院. 复合材料结构设计手册[M]. 北京: 航空工业出版社, 2001.

    Chinese Aeronautical Establishment. Composite material structure design manual[M]. Beijing: Aviation Industry Press, 2001(in Chinese).
    [35] THIELEMANN W. Contribution to the problem of buckling of orthotropic plates with special reference to plywood, NACA-TM-1263[R]. Washington, D.C.: NACA, 1950.
    [36] SEYEL E. On the buckling of rectangular isotropic or orthogonal isotropic plates by tangential stresses[J]. Ingenieur Archiv, 1933, 169(4).
    [37] 克里斯托斯·卡萨波格罗. 飞机复合材料结构设计与分析[M]. 颜万亿, 译. 上海: 上海交通大学出版社, 2011.

    KASSAPOGLOU C. Design and analysis of composite structures: With applications to aerospace structures[M]. YAN Wanyi, translated. Shanghai: Shanghai Jiao Tong University Press, 2011(in Chinese).
    [38] CHEN Q, QIAO P. Buckling and postbuckling of rotationally-restrained laminated composite plates under shear[J]. Thin-Walled Structures, 2021, 161: 107435. doi: 10.1016/j.tws.2021.107435
    [39] LEKHNITSKII S G. Anisotropic plates[M]. Tsai S W, Gordon C T, translated. 2nd ed. New York: Gordon & Breach Science Publishers, Inc., 1968.
    [40] LOPATIN A V, MOROZOV E V. Buckling of the SSFF rectangular orthotropic plate under in-plane pure bending[J]. Composite Structures, 2009, 90(3): 287-294.
    [41] LOPATIN A V, MOROZOV E V. Buckling of the CCFF orthotropic rectangular plates under in-plane pure bending[J]. Composite Structures, 2010, 92(6): 1423-1431.
    [42] LOPATIN A V, MOROZOV E V. Buckling of the SSCF rectangular orthotropic plate subjected to linearly varying in-plane loading[J]. Composite Structures, 2011, 93(7): 1900-1909.
    [43] PANDA S K, RAMACHAND L S. Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads[J]. International Journal of Mechanical Sciences, 2010, 52(6): 819-828. doi: 10.1016/j.ijmecsci.2010.01.009
    [44] 袁坚锋, 尼早, 陈保兴. 弯剪复合载荷作用下复合材料层合板屈曲的强度校核方法[J]. 复合材料学报, 2014, 31(1): 234-240. doi: 10.3969/j.issn.1000-3851.2014.01.034

    YUAN Jianfeng, NI Zao, CHEN Baoxing. Stress analysis of the buckling of composite laminates under bending shear combination loads[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 234-240(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.034
    [45] 袁坚锋, 尼早, 陈保兴. 面内弯曲载荷作用下两边简支两边固支复合材料层合板的屈曲[J]. 航空学报, 2014, 35(4): 1026-1033.

    YUAN Jianfeng, NI Zao, CHEN Baoxing. Buckling of SSCC composite laminates under in-plane bending load[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 1026-1033(in Chinese).
    [46] PAPAZOGLOU V J, TSOUVALIS N G, KYRIAKOPOULOS G D. Buckling of unsymmetrical laminates under linearly varying, biaxial in-plane loads, combines with shear[J]. Composite Structures, 1992, 20(3): 155-163. doi: 10.1016/0263-8223(92)90022-5
    [47] ZHONG H Z, GU C. Buckling of symmetrical cross-ply composite rectangular plates under a linear varying inplane load[J]. Composite Structures, 2007, 80(1): 42-48. doi: 10.1016/j.compstruct.2006.02.030
    [48] 李新祥, 童贤鑫, 关德新, 等. 有限长复合材料加筋板屈曲分析的有限条法及其应用[J]. 结构强度研究, 1996, (11).

    LI Xinxiang, TONG Xianxin, GUAN Dexin, et al. Finite strip method and its application for buckling analysis of finite length reinforced composite plates[J]. Structural Strength Research, 1996, (11)(in Chinese).
    [49] 陈金睿, 孔斌, 陈普会, 等. 轴压铆接加筋板局部屈曲弹性支持分析方法[J]. 南京航空航天大学学报, 2020, 52(6): 989-996.

    CHEN Jinrui , KONG Bin, CHEN Puhui, et al. Local buckling analysis method of elastically restrained riveted stiffened panels under uniaxial compression[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(6): 989-996(in Chinese).
    [50] 汪厚冰, 陈昊, 雷安民, 等. 复合材料帽形加筋壁板轴压屈曲与后屈曲性能[J]. 复合材料学报, 2018, 35(8): 2014-2022.

    WANG Houbing, CHEN Hao, LEI Anmin, et al. Buckling and post-buckling performance of hat-stiffened composite panels under axial compression load[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2014-2022(in Chinese).
    [51] 林国伟, 李新祥. 复合材料加筋板后屈曲分析方法及实验验证[J]. 航空材料学报, 2021, 41(4): 149-156.

    LIN Guowei, LI Xinxiang. Post-buckling analysis method of stiffened composite panels and test verification[J]. Journal of Aeronautical Materials, 2021, 41(4): 149-156(in Chinese).
    [52] 林国伟. 压缩载荷下复合材料壁板初始屈曲工程分析方法修正与验证, AA-623S-2020-101-0012[R]. 西安: 中国飞机强度研究所, 2020.

    LIN Guowei. Correction and verification of engineering analysis method for initial buckling of composite stiffened panels under compression load, AA-623S-2020-101-0012[R]. Xi'an: Aircraft Strength Research Institute of China, 2020(in Chinese).
    [53] 陈金睿. 翼面结构屈曲及后屈曲快速设计与分析方法研究[D]. 南京: 南京航空航天大学, 2017.

    CHEN Jinrui. Study on fast design and analysis method for buckling and post-buckling of wing structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [54] WANG Y, QIAO P. Improved buckling analysis of stiffened laminated composite plates by spline finite strip method[J]. Composite Structures, 2021, 255: 112936. doi: 10.1016/j.compstruct.2020.112936
    [55] 李新祥. 剪切载荷下复合材料壁板初始屈曲工程分析方法修正与验证, AA-623S-2020-101-0021[R]. 西安: 中国飞机强度研究所, 2020.

    LI Xinxiang. Correction and verification of engineering analysis method for initial buckling of composite wall panels under shear load, AA-623S-2020-101-0021[R]. Xi'an: Aircraft Strength Research Institute of China, 2020(in Chinese).
    [56] CONNOLLY J V. Composite design handbook for space structure applications, European Space Research and Technology Centre, ESA Publications Division, Noorrdwijk, The Netherlands[J]. The Aeronautical Journal, 1988, 92(920): 422-423.
    [57] TENNYSON R C, HANSEN J S. Buckling analysis of composite cylinders[C]//EUROMECH Conference "Flexible Shells-Theory and Applications". Aachen: European Mechanics Society, 1983.
    [58] SHANLEY F R. Simplified analysis of general instablity of stiffened shells in pure bending[J]. Journal of Aerospace Sciences, 1949, 16(10): 590-592.
    [59] VAN DER NEUT A. General instability of stiffened cylindrical shells under axial compression, Report S-314[R]. city: National Luchtvarrtlab, The Netherlands, 1947: Vol. 13.
    [60] 张庆茂, 陈金睿, 孔斌, 等. 基于弯曲刚度比的复合材料帽形加筋板局部屈曲工程修正计算方法[J]. 复合材料学报, 2022, 39(12): 6109-6118.

    ZHANG Qingmao, CHEN Jinrui, KONG Bin, et al. Local buckling updating engineering method of hat-stiffened composite panel based on flexural stiffness ratio[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6109-6118(in Chinese).
    [61] 张驰, 郑锡涛, 张东健, 等. 复合材料加筋壁板轴压屈曲载荷工程估算新方法[J/OL]. 复合材料学报, 2025, 42.

    ZHANG Chi, ZHENG Xitao, ZHANG Dongjian, et al. A new engineering method for predicting the axial compression buckling load of composite stiffened panels[J/OL]. Acta Materiae Compositae Sinica, 2025, 42(in Chinese).
    [62] CASTRO S G P, DONADON M V. Assembly of semi-analytical models to address linear buckling and vibration of stiffened composite panels with debonding defect[J]. Composite Structures, 2017, 160: 232-247.
    [63] OVESY H R, KHARAZI M, TAGHIZADEH M. Semi-analytical buckling analysis of clamped composite plates containing embedded rectangular and circular delaminations[J]. Mechanics of Advanced Materials and Structures, 2010, 17(5): 343-352.
    [64] 谭翔飞, 何宇廷, 冯宇, 等. 航空复合材料加筋板剪切稳定性及后屈曲承载性能[J]. 复合材料学报, 2018, 35(2): 320-331.

    TAN Xiangfei, HE Yuting, FENG Yu, et al. Stability and post-buckling carrying capacity of aeronautic composite stiffened panel under shear loading[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 320-331(in Chinese).
    [65] DA SILVA D C, DONADON M V, ARBELO M A. A semi-analytical model for shear buckling analysis of stiffened composite panel with debonding defect[J]. Thin-Walled Structures, 2022, 171: 108636. doi: 10.1016/j.tws.2021.108636
    [66] STOWELL E Z, SCHWARTZ E B. Critical stress for an infinitely long flat plate with elastically restrained edges under combined shear and direct stress, NACA-WR-L-340[R]. Washington, D.C.: NACA, 1943.
    [67] STOWELL E Z, SCHWARTZ E B. Critical stress for an infinitely long flat plate with elastically restrained edges under combined shear and direct stress, NACA-WR-L-340[R]. Washington, D.C.: NACA, 1943.
    [68] WEAVER P M, NEMETH M P. Improved design formulas for buckling of orthotropic plates under combined loading, NASA/CR-20080015745[R]. Hampton: NASA, 2008.
    [69] BEERHORST M, SEIBEL M. Buckling behavior of an orthotropic plate strip under combined compression and shear[J]. Journal of Aircraft, 2011, 48(4): 1360-1367. doi: 10.2514/1.C031284
    [70] WANG B W, CHEN X M, SUN X S, et al. Interaction formulae for buckling and failure of orthotropic plates under combined axial compression/tension and shear[J]. Chinese Journal of Aeronautics, 2022, 35(3): 272-280. doi: 10.1016/j.cja.2021.01.021
    [71] 陈向明, 陈普会, 孙侠生, 等. 复合材料板拉/压-剪复合载荷屈曲相关方程[J]. 航空学报, 2021, 42(12): 225417-225417. doi: 10.7527/S1000-6893.2021.25417

    CHEN Xiangming, CHEN Puhui, SUN Xiasheng, et al. Buckling interaction formulae of composite plates under combined axial compression/tension and shear loads[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 225417-225417 (in Chinese). doi: 10.7527/S1000-6893.2021.25417
    [72] GERARD G, BECKER H. Handbook of structural stability Part I-Buckling of flat plates, NACA-TN-3781[R]. Washington, D.C.: NACA, 1957.
    [73] BECKER H. Handbook of structural stability Part II-Buckling of composite elements, NACA-TN-3782[R]. Washington, D.C.: NACA, 1957.
    [74] GERARD G, BECKER H. Handbook of structural stability Part III-Buckling of curved plates and shells, NACA-TN-3783[R]. Washington, D.C.: NACA, 1957.
    [75] GERARD G. Handbook of structural stability Part IV-Failure of plates and composite elements, NACA-TN-3784[R]. Washington, D.C.: NACA, 1957.
    [76] GERARD G. Handbook of structural stability Part V-Compressive strength of flat stiffened panels, NACA-TN-3785[R]. Washington, D.C.: NACA, 1957.
    [77] BECKER H. Handbook of structural stability Part VI-Strength of stiffened curved plates and shells, NACA-TN-3786[R]. Washington, D.C.: NACA, 1957.
    [78] KUHN P, PETERSON J P, LEVIN L R. A summary of diagonal tension Part I-Methods of analysis, NACA-TN-2661[R]. Washington, D.C.: NACA, 1952.
    [79] KUHN P, PETERSON J P, LEVIN L R. A summary of diagonal tension Part II-Experimental evidence, NACA-TN-2662[R]. Washington, D.C.: NACA, 1952.
    [80] SPIER E E. On crippling and short column buckling of graphite/epoxy structure with arbitrary symmetrical laminates[C]//Presented at SESA 1977 Spring Meeting. city: publisher, 1977.
    [81] SPIER E E, KLOUMAN F L. Post buckling behavior of graphite/epoxy laminated plates and channels[C]//Proceedings Army Symposium on Solid Mechanics 760914, AMMRC MS 76. city: publisher, 1975: 62-78.
    [82] RENIERI M P, GARRETT R A. Investigation of the local buckling, postbuckling and crippling behavior of graphite/epoxy short thin-walled compression members, Mcdonnell Aircraft Report MDC A7091[R]. St. Louis: publisher, 1981.
    [83] BONANNI D L, JOHNSON E R, STARNES JR. J H. Local crippling of thin-walled graphite-epoxy stiffeners[J]. AIAA Journal, 1991, 29(11): 1951-1959. doi: 10.2514/3.10824
    [84] SPIER E E. Postbuckling fatigue behavior of graphite-epoxy stiffeners[C]//23rd Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 1982: 511-527.
    [85] DEO R B, AGARWAL B L, MADENCI E. Design methodology and life analysis of postbuckled metal and composite panels, Technical Report AFWAL-TR-85-3096[R]. Washington, D.C.: Air Force Wright Aeronautical Laboratories, 1985.
    [86] DEO R B, KAN H P, BHATIA N M. Design development and durability validation of postbuckled composite and metal panels, WRDC-TR-89-3030, 4 Volumes[R]. Wright-Patterson Air Force Base, Ohio: Air Force Flight Dynamics Laboratory, 1989.
    [87] OLIVERI V, MILAZZO A. A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels[J]. Computers & Structures, 2018, 196: 263-276.
    [88] SCHILLING J C, MITTELSTEDT C. Local postbuckling of omega-stringer-stiffened composite panels[J]. Thin-Walled Structures, 2022, 181: 110027.
    [89] 童贤鑫, 高之恒, 关德新. 帽型复合材料加筋叠层板轴压稳定性分析与试验研究[J]. 航空学报, 1988, (05): 255-259.

    TONG Xianxin, GAO Zhiheng, GUAN Dexin. Analysis and experimental research on axial compressive stability of hat shaped composite reinforced laminates[J]. Acta Aeronautica et Astronautica Sinica, 1988, (05): 255-259(in Chinese).
    [90] 朱菊芬, 杨海平. 复合材料层合加筋板后屈曲强度及破坏研究[J]. 航空学报, 1995, 16(1): 118-122.

    ZHU Jufen, YANG Haiping. Research on Postbuckling Strength and Failure of Composite Laminated Reinforced Plates[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(1): 118-122(in Chinese).
    [91] 朱菊芬, 杨海平, 汪海, 等. 复合材料加筋板壳结构的后屈曲强度及破坏分析程序系统[J]. 计算结构力学及其应用, 1996, 13(4): 489-493.

    ZHU Jufen, YANG Haiping, WANG Hai, et al. A programming system of postbuckling strength and failure analysis for composite stiffened plates and shells[J]. Journal of Computational Structural Mechanics and Applications, 1996, 13(4): 489-493(in Chinese).
    [92] 朱菊芬, 郑罡, 汪海, 等. 复合材料薄壁结构屈曲、后屈曲强度及破坏分析专用程序系统[C]//全国第11届复合材料学术会议论文集. 合肥: 出版者, 2000.

    ZHU Jufen, ZHENG Gang, WANG Hai, et al. A specialized program system for buckling, post buckling strength, and failure analysis of composite thin-walled structures[C]//Proceedings of the 11th National Academic Conference on Composite Materials. Hefei: Publisher, 2000(in Chinese).
    [93] 李新祥, 关德新, 刘西林. 复合材料加筋条典型元件轴压试验研究[C]//全国第14届复合材料学术会议论文集. 宜昌: 出版者, 2006: 1166-1173.

    LI Xinxiang, GUAN Dexin, LIU Xilin. Research on axial compression test of typical components of composite reinforced bars[C]//Proceedings of the 14th National Academic Conference on Composite Materials. Yichang: Publisher, 2006: 1166-1173(in Chinese).
    [94] 林国伟. 压缩载荷下复合材料壁板后屈曲承载能力工程分析方法修正与验证, AA-623S-2020-101-0014[R]. 出版地: 中国飞机强度研究所, 出版年.

    LIN Guowei. Revision and verification of engineering analysis method for post buckling bearing capacity of composite wall panels under compression load, AA-623S-2020-101-0014[R]. city: AVIC Aircraft Strength Research Institute, year(in Chinese).
    [95] 王喆. 复合材料加筋曲面壁板后屈曲承载能力工程估算的有效宽度法修正, AA-623S-2020-101-0026[R]. 出版地: 中国飞机强度研究所, 出版年.

    WANG Zhe. Correction of effective width method for engineering estimation of post buckling bearing capacity of composite reinforced curved wall panels, AA-623S-2020-101-0026[R]. city: AVIC Aircraft Strength Research Institute, year(in Chinese).
    [96] LIAN C, WANG P, ZHANG K, et al. Experimental and numerical research on the calculation methods for buckling and post-buckling of aircraft tail inclined stiffened panel under compression load[J]. Aerospace Science and Technology, 2024, 146: 108930. doi: 10.1016/j.ast.2024.108930
    [97] ZHANG X, CAI B, MIAO H, et al. Experiment and analysis of composite reinforced panel’s limit load capacity under axial compression[J]. Thin-Walled Structures, 2023, 187: 110729. doi: 10.1016/j.tws.2023.110729
    [98] WILCKENS D, ODERMANN F, KLING A. Buckling and post buckling of stiffened CFRP panels under compression and shear test and numerical analysis[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston: publisher, 2013.
    [99] ABRAMOVICH H, WELLER T, BISAGNI C. Buckling behavior of composite laminated stiffened panels under combined shear–axial compression[J]. Journal of Aircraft, 2008, 45(2): 402-412. doi: 10.2514/1.27635
    [100] BISAGNI C, CORDISCO P. An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading[J]. Composite Structures, 2003, 60(4): 391-402. doi: 10.1016/S0263-8223(03)00024-2
    [101] BISAGNI C, CORDISCO P. Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque[J]. Composite Structures, 2006, 73: 138-149. doi: 10.1016/j.compstruct.2005.11.055
    [102] BISAGNI C. Numerical analysis and experimental correlation of composite shell buckling and post-buckling[J]. Composites Part B: Engineering, 2000, 31(8): 655-667.
    [103] ZHU S H, YAN J Y, WANG Y Q, et al. Buckling and postbuckling experiments of integrally stiffened panel under compression–shear loads[J]. Journal of Aircraft, 2015, 52(2): 680-691. doi: 10.2514/1.C033107
    [104] SINGH S B, KUMAR A. Postbuckling response and strength of laminates under combined in-plane loads[J]. Composites Science and Technology, 1999, 59: 727-736. doi: 10.1016/S0266-3538(98)00125-0
    [105] 陈向明. 复合材料加筋壁板后屈曲失效机理与失效预测方法[D]. 西安: 西北工业大学, 2021.

    CHEN Xiangming. The failure mechanism and failure prediction method of post buckling of composite reinforced wall panels[D]. Xi'an: Northwestern Polytechnical University, 2021(in Chinese).
    [106] KOUNDOUROS M. In-plane compressive behaviour of stiffened thin-skinned composite panels with a stress concentrator[D]. London: Imperial College London, 2005.
    [107] 孔斌. 复合材料整体加筋板轴压后屈曲问题研究[D]. 南京: 南京航空航天大学, 2010.

    KONG Bin. Research on the buckling problem of composite reinforced panels under axial compression[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [108] ABAQUS-Inc. Abaqus 6.11 analysis user’s manual Volume V: Prescribed conditions, constraints & interactions, report number[R]. Rhode Island: Hibbett, Karlsson and Sorensen Inc., 2011: 35.1. 10.
    [109] 孙启星. 复合材料整体加筋壁板的失效分析[D]. 南京: 南京航空航天大学, 2008.

    SUN Qixing. Failure analysis of composite reinforced wall panels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
    [110] Oh S H, Kim K S, Kim C G. An efficient postbuckling analysis technique for composite stiffened curved panels[J]. Composite Structures, 2006, 74(3): 361-369. doi: 10.1016/j.compstruct.2005.04.016
    [111] WANG B, CHEN X, WANG W, et al. Post-buckling failure analysis of composite stiffened panels considering the mode III fracture[J]. Journal of Composite Materials, 2022, 56(20): 3099-3111. doi: 10.1177/00219983221109946
    [112] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4): 1076-1086.

    LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1076-1086(in Chinese).
    [113] RAIMONDO A, RICCIO A. Inter-laminar and intra-laminar damage evolution in composite panels with skin-stringer debonding under compression[J]. Composites Part B: Engineering, 2016, 94(12): 139-151.
    [114] LI H C H, DHARMAWAN F, HERSZBERG I, et al. Fracture behaviour of composite maritime T-joints[J]. Composite Structures, 2006, 75(1): 339-350.
    [115] 杜洪雨, 奚晓波, 孟力华, 等. 含分层损伤的复合材料层压板后屈曲及低周疲劳分层扩展有限元模拟研究[J]. 玻璃钢/复合材料, 2018, (6): 39-43.

    DU Hongyu, XI Xiaobo, MENG Lihua, et al. Finite element of post-buckled delamination of composite laminate with preliminary debond subjected to static and fatigue loads[J]. Journal of FRP/Composites, 2018, (6): 39-43(in Chinese).
    [116] 常鑫. 含孔隙和分层缺陷大型复合材料构件强度多尺度分析[D]. 大连: 大连理工大学, 2021.

    CHANG Xin. Strength analysis of large composite component containing void and delamination defects based on multi-scale method[D]. Dalian: Dalian University of Technology, 2021.
    [117] RUSSO A, SELLITTO A, PALUMBO C, et al. Parametric investigation of stiffened panel subjected to compressive loads: Influence of initial delamination length on damage behaviour[J]. Procedia Structural Integrity, 2024, 52: 535-542. doi: 10.1016/j.prostr.2023.12.053
    [118] RUSSO A, ZARRELLI M, SELLITTO A, et al. Fiber bridging induced toughening effects on the delamination behavior of composite stiffened panels under bending loading: A numerical/experimental study[J]. Materials, 2019, 12(15): 2407. doi: 10.3390/ma12152407
    [119] 叶强, 陈普会. 复合材料粘聚区模型的强度参数预测[J]. 固体力学学报, 2012, 33(6): 566-573.

    YE Qiang, CHEN Puhui. Prediction on the strength parameters of cohesive zone model for simulation composite delamination[J]. Chinese Journal of Solid Mechanics, 2012, 33(6): 566-573(in Chinese).
    [120] YE Q, CHEN P H. Prediction of the cohesive strength for numerically simulating composite delamination via CZM-based FEM[J]. Composites Part B: Engineering, 2011, 42(5): 1076-1083. doi: 10.1016/j.compositesb.2011.03.021
    [121] 崔浩, 李玉龙, 刘元镛, 等. 基于粘聚区模型的含填充区复合材料接头失效数值模拟[J]. 复合材料学报, 2010, 27(2): 161-168.

    CUI Hao, LI Yulong, LIU Yuanyong, et al. Numerical simulation of composites joints failure based on cohesive zone model[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 161-168(in Chinese).
    [122] 李飞, 马平平, 王欣宇方. 粘聚区模型在复合材料层间失效分析中的研究现状[J]. 玻璃钢/复合材料, 2016, (7): 86-91.

    LI Fei, MA Pingping, WANG Xinyufang. The development of composite delamination failure based on cohesive zone model (CZM)[J]. Fiber Reinforced Plastics/Composites, 2016, (7): 86-91(in Chinese).
    [123] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 522509-522509.

    ZHAO Libin, GONG Yu, ZHANG Jianyu. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522509-522509(in Chinese).
    [124] WANTHAL S, SCHAEFER J, JUSTUSSON B, et al. Verification & validation of progressive damage/failure analysis for stiffened composite structures, NASA/TM-20170010327[R]. Hampton: NASA Langley Research Center, 2017.
    [125] REINOSO J, BLAQUEZ A, ESTEFANI A, et al. Experimental and three-dimensional global-local finite element analysis of a composite component including degradation process at the interfaces[J]. Composites Part B: Engineering, 2012, 43(4): 1929-1942. doi: 10.1016/j.compositesb.2012.02.010
    [126] NAGARAJ M H, PETROLO M, CARRERA E. A global-local approach for progressive damage analysis of fiber-reinforced composite laminates[J]. Thin-Walled Structures, 2021, 169: 108343. doi: 10.1016/j.tws.2021.108343
    [127] HÜHNE S, REINOSO J, JANSEN E, et al. A two-way loose coupling procedure for investigating the buckling and damage behaviour of stiffened composite panels[J]. Composite Structures, 2016, 136: 513-525. doi: 10.1016/j.compstruct.2015.09.056
    [128] AKTERSKAIA M, JANSEN E, HÜHNE S, et al. Efficient progressive failure analysis of multi-stringer stiffened composite panels through a two-way loose coupling global-local approach[J]. Composite Structures, 2018, 183: 137-145. doi: 10.1016/j.compstruct.2017.02.011
    [129] AKTERSKAIA M, JANSEN E, HALLETT S R, et al. Analysis of skin-stringer debonding in composite panels through a two-way global-local method[J]. Composite Structures, 2018, 202: 1280-1294. doi: 10.1016/j.compstruct.2018.06.064
    [130] YE L. Role of matrix resin in delamination onset and growth in composite laminates[J]. Composites Science and Technology, 1988, 33(4): 257-277. doi: 10.1016/0266-3538(88)90043-7
    [131] CHRISRENSEN R M, DETERESA S J. Delamination failure investigation for out-ofplane loading in laminates[J]. Journal of Composite Materials, 2004, 38(24): 2231-2238. doi: 10.1177/0021998304046431
    [132] CHEN X M, SUN X S, CHEN P H, et al. A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates[J]. Composite Structures, 2020, 241: 112121. doi: 10.1016/j.compstruct.2020.112121
    [133] KOOTTE L, BISAGNI C, RANATUNGA V, et al. Effect of composite stiffened panel design on skin-stringer separation in postbuckling[C]//AIAA Scitech 2021 Forum. VIRTUAL EVENT: American Institute of Aeronautics and Astronautics, 2021[2022-04-18]. https://arc.aiaa.org/doi10.2514/6.2021-0441.
    [134] WHITNEY J M, NUISMER R J. Stress fracture criteria for laminated composites containing stress concentrations[J]. Journal of composite Materials, 1974, 8: 253-265. doi: 10.1177/002199837400800303
    [135] NUISMER R J, WHITNEY J M. Uniaxial failure of composite laminates containing stress concentrations[M]//SENDECKYJ GP. Fracture Mechanics of Composites. West Conshohocken: ASTM International, 1975: 117-142.
    [136] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9): 834-855. doi: 10.1177/002199838702100904
    [137] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [138] KNOPS M. Analysis of failure in fiber polymer laminates: the theory of Alfred Puck[M]. Berlin: Springer, 2008.
    [139] ORIFICI A C, THOMSON R S, DEGENHARDT R. Degradation investigation in a postbuckling composite stiffened fuselage panel[J]. Composite Structures, 2008, 82: 217-224. doi: 10.1016/j.compstruct.2007.01.012
    [140] BERTOLINI J, CASTANIE B, BARRAU J, et al. An experimental and numerical study on omega stringer debonding[J]. Composite Structures, 2008, 86: 233-242. doi: 10.1016/j.compstruct.2008.03.013
    [141] BERTOLINI J, CASTANIE B, BARRAU J, et al. Multi-level experimental and numerical analysis of composite stiffener debonding. Part 1: Non-specific specimen level[J]. Composite Structures, 2009, 90: 381-391. doi: 10.1016/j.compstruct.2009.04.001
    [142] BERTOLINI J, CASTANIE B, BARRAU J, et al. Multi-level experimental and numerical analysis of composite stiffener debonding. Part 2: Element and panel level[J]. Composite Structures, 2009, 90: 392-403. doi: 10.1016/j.compstruct.2009.04.002
    [143] WAGNER W, BALZANI C. Prediction of the postbuckling response of composite airframe panels including ply failure[J]. Engineering Fracture Mechanics, 2010, 77(18): 3648-3657. doi: 10.1016/j.engfracmech.2010.05.009
    [144] BALZANI C, WAGNER W. An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates[J]. Engineering Fracture Mechanics, 2008, 75(9): 2597-2615. doi: 10.1016/j.engfracmech.2007.03.013
    [145] 常园园, 许希武, 郭树祥. 压缩载荷下复合材料整体加筋板渐进损伤非线性数值分析[J]. 复合材料学报, 2011, 28(4): 202-211.

    CHANG Yuanyuan, XU Xiwu, GUO Shuxiang. Nonlinear progressive damage analysis of integral stiffened composite panels under compressive load[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 202-211(in Chinese).
    [146] 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8): 223987-223987. doi: 10.7527/S1000-6893.2020.23987

    WANG Binwen, AI Sen, ZHANG Guofan, et al. Validation method for post-buckling analysis model of stiffened composite panels considering uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223987-223987(in Chinese). doi: 10.7527/S1000-6893.2020.23987
    [147] CHEN X M, SUN X S, CHEN P H, et al. Rationalized improvement of Tsai–Wu failure criterion considering different failure modes of composite materials[J]. Composite Structures, 2021, 256: 113120. doi: 10.1016/j.compstruct.2020.113120
    [148] LIAN C, WANG P, CHEN X, et al. Experimental and numerical research on the analysis methods for buckling and post-buckling of inclined stiffened panel under shear load[J]. Thin-Walled Structures, 2024, 195: 111374. doi: 10.1016/j.tws.2023.111374
    [149] JI R X, ZHAO L B, WANG K K, et al. Effects of debonding defects on the postbuckling and failure behaviors of composite stiffened panel under uniaxial compression[J]. Composite Structures, 2021, 256: 113121. doi: 10.1016/j.compstruct.2020.113121
    [150] VAN DOOREN K S, TIJS B H A H, WALESON J E A, et al. Skin-stringer separation in post-buckling of butt-joint stiffened thermoplastic composite panels[J]. Composite Structures, 2023, 304: 116294. doi: 10.1016/j.compstruct.2022.116294
    [151] PAZ J, RAIMONDO A, BISAGNI C. Experimental study of post-buckled single-stringer composite specimens under fatigue loads with different load levels and load ratios[J]. Composites Part B: Engineering, 2023, 255: 110606. doi: 10.1016/j.compositesb.2023.110606
    [152] NADEEM MASOOD S, VISWAMURTHY S R, GADDIKERI K M. Composites airframe panel design for post-buckling−An experimental investigation[J]. Composite Structures, 2020, 241: 112104. doi: 10.1016/j.compstruct.2020.112104
    [153] PSIHOYOS H, FOTOPOULOS K, LAMPEAS G, et al. Development of a numerical methodology for the analysis of the post-buckling and failure behavior of butt-joint stiffened thermoplastic composite panels[J]. Engineering Failure Analysis, 2024, 160: 108193. doi: 10.1016/j.engfailanal.2024.108193
    [154] HU C, XU Z, HUANG M, et al. An insight into the mechanical behavior and failure mechanisms of T-stiffened composite structures with through-interface debonding defects[J]. Ocean Engineering, 2024, 300: 117342. doi: 10.1016/j.oceaneng.2024.117342
    [155] SOUTIS C, SMITH F C, MATTEWS F L. Predicting the compressive engineering performance of carbon fibre-reinforced plastics[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31: 531-536. doi: 10.1016/S1359-835X(99)00103-7
    [156] CHEN P H, SHEN Z, WANG J Y. A new method for compression after impact strength prediction of composite laminates[J]. Journal of Composite Materials, 2002, 36(5): 589-610. doi: 10.1177/0021998302036005497
    [157] CHEN P H, SHEN Z, WANG J Y. Strength prediction of notched composite laminate[J]. Composite Science and Technology, 2001, 61(9): 1311-1321. doi: 10.1016/S0266-3538(01)00030-6
    [158] 程小全, 张子龙, 吴学仁. 小尺寸试件层合板低速冲击后的剩余压缩强度[J]. 复合材料学报, 2002, 19(6): 8-12. doi: 10.3321/j.issn:1000-3851.2002.06.002

    CHENG Xiaoquan, ZHANG Zilong, WU Xueren. Post-impact compressive strength of small composite laminate specimens[J]. Acta Materiae Compositae Sinica, 2002, 19(6): 8-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2002.06.002
    [159] 林智育, 许希武. 复合材料层板低速冲击后剩余压缩强度[J]. 复合材料学报, 2008, 25(1): 140-146. doi: 10.3321/j.issn:1000-3851.2008.01.024

    LIN Zhiyu. XU Xiwu. Residual compressive strength of composite laminates after low-velocity impact[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 140-146(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.024
    [160] 杨钧超, 陈向明, 邹鹏, 等. 复合材料层合板剪切稳定性试验及强度预测[J]. 复合材料学报, 2023, 40(3): 1707-1717.

    YANG Junchao, CHEN Xiangming, ZOU Peng, et al. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1707-1717(in Chinese).
    [161] CAPUTO F, DE LUCA A, LAMANNA G, et al. Numerical study for the structural analysis of composite laminates subjected to low velocity impact[J]. Composites Part B: Engineering, 2014, 67: 296-302. doi: 10.1016/j.compositesb.2014.07.011
    [162] RIVALLANT S, BOUVET C, HONGKARNJANAKUL N. Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements[J]. Composites Part A: Applied Science and Manufacturing, 2013, 55: 83-93. doi: 10.1016/j.compositesa.2013.08.003
    [163] CAPUTO F, DE LUCA A, SEPE R. Numerical study of the structural behaviour of impacted composite laminates subjected to compression load[J]. Composites Part B: Engineering, 2015, 79: 456-465. doi: 10.1016/j.compositesb.2015.05.007
    [164] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212-226. doi: 10.1016/j.compositesa.2015.01.025
    [165] WU Q, HU S, TANG X, et al. Compressive buckling and post-buckling behaviors of J-type composite stiffened panel before and after impact load[J]. Composite Structures, 2023, 304: 116339. doi: 10.1016/j.compstruct.2022.116339
    [166] WU X, CHEN Q, ZHAO B, et al. Experimental behavior and shear bearing capacity simulation of stiffened composite panels subjected to invisible damage impact[J]. Thin-Walled Structures, 2022, 178: 109454. doi: 10.1016/j.tws.2022.109454
    [167] GROTTO F, BOUVET C, CASTANIÉ B, et al. Design and testing of impacted stiffened CFRP panels under compression with the VERTEX test rig[J]. Aerospace, 2023, 10(4): 327. doi: 10.3390/aerospace10040327
    [168] TAN R, XU J, GUAN Z, et al. Experimental study on effect of impact locations on damage formation and compression behavior of stiffened composite panels with L-shaped stiffener[J]. Thin-Walled Structures, 2020, 150: 106707. doi: 10.1016/j.tws.2020.106707
    [169] TAN R, GUAN Z, SUN W, et al. Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels[J]. Composite Structures, 2018, 203: 486-497. doi: 10.1016/j.compstruct.2018.07.038
    [170] SUN W, GUAN Z, OUYANG T, et al. Effect of stiffener damage caused by low velocity impact on compressive buckling and failure modes of T-stiffened composite panels[J]. Composite Structures, 2018, 184: 198-210. doi: 10.1016/j.compstruct.2017.09.084
    [171] 杨钧超, 王雪明, 陈向明, 等. 低速冲击损伤对复材加筋板压缩性能的影响[J]. 航空学报, 2023, 44(20): 228498-228498. doi: 10.7527/S1000-6893.2023.28498

    YANG Junchao, WANG Xueming, CHEN Xiangming, et al. Effect of low-velocity impact damage on compressive properties of composite stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228498-228498(in Chinese). doi: 10.7527/S1000-6893.2023.28498
    [172] MENG Z, HUANG L, WANG P, et al. Investigation on damage behavior of composite T-shaped stiffened panels under compression after multi-point impact considering impact positions[J]. Thin-Walled Structures, 2024, 196: 111514. doi: 10.1016/j.tws.2023.111514
    [173] PENG A, DENG J, CAI D, et al. On damage behavior and stability of composite T-shaped stiffened panels under compression after impact considering impact locations[J]. Thin-Walled Structures, 2023, 182: 110295. doi: 10.1016/j.tws.2022.110295
    [174] 李念. 复合材料加筋板边缘冲击损伤及冲击后压缩失效机理分析[D]. 南京: 南京航空航天大学, 2016.

    LI Nian. Failure mechanism analysis for edge impact damage and compression after-impact behavior of stiffened composite panels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
    [175] LI N, CHEN P. Failure prediction of T-stiffened composite panels subjected to compression after edge impact[J]. Composite Structures, 2017, 162: 210-226. doi: 10.1016/j.compstruct.2016.12.004
    [176] LI N, CHEN P. Prediction of Compression-After-Edge-Impact (CAEI) behaviour in composite panel stiffened with I-shaped stiffeners[J]. Composites Part B: Engineering, 2017, 110: 402-419. doi: 10.1016/j.compositesb.2016.11.043
    [177] WIGGENRAAD J F M, GREENHALG E S, OLSSON R. Design and analysis of stiffened composite panels for damage resistance and tolerance[C]//Fifth World Congress on Computational Mechanics. Vienna: publisher, 2002: 81208.
    [178] DÁVILA C G, BISAGNI C. Fatigue life and damage tolerance of postbuckled composite stiffened structures with initial delamination[J]. Composite Structures, 2017, 161: 73-84. doi: 10.1016/j.compstruct.2016.11.033
    [179] ZHANG T J, LI S L, CHANG F, et al. An experimental and numerical analysis for stiffened composite panel subjected to shear loading in hygrothermal environment[J]. Composite Structure, 2016, 138: 107-115. doi: 10.1016/j.compstruct.2015.11.056
    [180] 李乐坤, 张铁军, 支乐, 等. 湿热环境下复合材料加筋壁板压缩屈曲与后屈曲行为的有限元模拟[J]. 机械工程材料, 2023, 47(8): 93-99. doi: 10.11973/jxgccl202308015

    LI Lekun, ZHANG Tiejun, ZHI Le, et al. Finite element modelling for buckling and post-buckling behavior of composite stiffened panel during compression in hygrothermal environment[J]. Materials For Mechanical Engineering, 2023, 47(8): 93-99(in Chinese). doi: 10.11973/jxgccl202308015
    [181] FENG Y, MA B, CUI R, et al. Effects of hygrothermal environment on the buckling and postbuckling performances of stiffened composite panels under axial compression[J]. Composite Structures, 2020, 242: 112132. doi: 10.1016/j.compstruct.2020.112132
    [182] 李伟, 邢华璐, 高维健. 相对刚度对复合材料加筋板后屈曲承载效率影响研究[J]. 飞机设计, 2024, 44(1): 45-49, 55.

    LI Wei, XING Hualu, GAO Weijian. Effect of relative stiffness on post buckling load-carrying efficiency of composite stiffened panels[J]. Aircraft Design, 2024, 44(1): 45-49, 55(in Chinese).
    [183] HAO P, TANG H, WANG Y, et al. Stochastic isogeometric buckling analysis of composite shell considering multiple uncertainties[J]. Reliability Engineering & System Safety, 2023, 230: 108912.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  29
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-05-19
  • 录用日期:  2024-05-24
  • 网络出版日期:  2024-06-15
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回