留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维感应元件厚度对碳纤维增强热塑性复合材料感应焊接接头力学性能及断裂形式的影响

王飞云 罗杰帮 张平则 刘星 占小红

王飞云, 罗杰帮, 张平则, 等. 碳纤维感应元件厚度对碳纤维增强热塑性复合材料感应焊接接头力学性能及断裂形式的影响[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 王飞云, 罗杰帮, 张平则, 等. 碳纤维感应元件厚度对碳纤维增强热塑性复合材料感应焊接接头力学性能及断裂形式的影响[J]. 复合材料学报, 2022, 40(0): 1-11
Feiyun WANG, Jiebang LUO, Pingze ZHANG, Xing LIU, Xiaohong ZHAN. Effect of thickness of carbon susceptor on mechanical property and fracture mode of carbon fiber reinforced thermoplastic composite induction welded joint[J]. Acta Materiae Compositae Sinica.
Citation: Feiyun WANG, Jiebang LUO, Pingze ZHANG, Xing LIU, Xiaohong ZHAN. Effect of thickness of carbon susceptor on mechanical property and fracture mode of carbon fiber reinforced thermoplastic composite induction welded joint[J]. Acta Materiae Compositae Sinica.

碳纤维感应元件厚度对碳纤维增强热塑性复合材料感应焊接接头力学性能及断裂形式的影响

基金项目: 先进复合材料国防科技重点实验室开放基金 (6142904180105)
详细信息
    通讯作者:

    占小红,博士,教授,博士生导师,研究方向为激光焊接与增材制造技术、复合材料先进连接技术等 E-mail: xiaohongzhan_nuaa@126.com

  • 中图分类号: TB332

Effect of thickness of carbon susceptor on mechanical property and fracture mode of carbon fiber reinforced thermoplastic composite induction welded joint

  • 摘要: 利用碳纤维织物与树脂薄膜制备了0.2 mm、0.3 mm与0.5 mm三种不同厚度的碳纤维感应元件,并开展碳纤维增强热塑性复合材料(Carbon Fiber Reinforced Thermoplastic Composite, CFRTP)感应焊接建模仿真与工艺试验。观察CFRTP感应焊接接头成形形貌,开展接头拉伸剪切强度测试与断口形貌分析,着重探究感应元件厚度对接头力学性能与断裂形式的影响。研究结果表明:碳纤维感应元件能在不引入异质材料的前提下实现CFRTP的高质量感应焊接,但接头界面温度分布具有明显的不均匀性;随着感应元件厚度的增加,过量的树脂会降低接头的成形效果、连接质量与力学性能,同时界面的有效连接面积也随之减小;当感应元件厚度为0.2 mm时,焊接接头的拉伸剪切强度最高可达23.77 MPa;焊接接头的断裂形式包括感应元件内聚破坏、母材表层自破坏、界面破坏和混合破坏,造成接头失效的断裂机制会根据感应元件厚度的改变而发生变化。

     

  • 图  1  不同厚度的碳纤维感应元件:(a) 感应元件制备过程示意图;(b) 感应元件实物样品图

    Figure  1.  Carbon susceptors with different thicknesses: (a) Schematic diagram of the manufacturing process for susceptors; (b) Actual picture of susceptors

    图  2  碳纤维增强聚醚醚酮(CF/PEEK)感应焊接过程示意图:(a) 设备组成及焊接原理;(b) 焊接接头的连接成形过程

    Figure  2.  Schematic diagram of carbon fiber reinforced polyetheretherketone (CF/PEEK) induction welding process: (a) Equipment composition and fundamentals of welding; (b) Formation of welded joint

    图  3  CF/PEEK感应焊接试验设备:(a) 超高频感应焊机及专用焊接夹具;(b) 盘式感应线圈

    Figure  3.  Experimental equipment for CF/PEEK induction welding: (a) UHF induction power supply and special fixture; (b) Pancake induction coil

    图  4  CF/PEEK感应焊接试样尺寸:(a)俯视图;(b)正视图

    Figure  4.  Size of CF/PEEK induction welded sample: (a) Top view; (b) Front view

    图  5  CF/PEEK感应焊接过程有限元模型:(a)~(b) 几何模型;(c)~(e) 网格划分

    Figure  5.  Finite element model of CF/PEEK induction welding process: (a)-(b) Geometric models; (c)-(e) Mesh division

    图  6  CF/PEEK感应焊接过程温度场仿真结果验证:(a) 截面温度分布;(b) 截面最高温度

    Figure  6.  Verification of temperature simulation results of CF/PEEK induction welding: (a) Temperature distribution in cross-section; (b) Maximum temperature in cross-section

    图  7  CF/PEEK感应焊接接头变形测量

    Figure  7.  Deformation measurement of CF/PEEK induction welded joint

    图  8  不同感应元件厚度下CF/PEEK焊接接头宏观形貌:(a) 0.2 mm;(b) 0.3 mm;(c) 0.5 mm

    Figure  8.  Macro morphology of CF/PEEK induction welded joints using susceptors with different thicknesses: (a) 0.2 mm; (b) 0.3 mm; (c) 0.5 mm

    图  9  不同感应元件厚度下CF/PEEK焊接接头断口形貌:(a) 0.2 mm;(b) 0.3 mm;(c) 0.5 mm

    Figure  9.  Fracture morphology of CF/PEEK induction welded joints using susceptors with different thicknesses: (a) 0.2 mm; (b) 0.3 mm; (c) 0.5 mm

    图  10  CF/PEEK焊接接头温度分布仿真结果:(a) 切面位置;(b) XY切面;(c) XZ切面;(d) YZ切面

    Figure  10.  Temperature distribution simulation of CF/PEEK induction welded joint: (a) Tangent plane position; (b) XY plane; (c) XZ plane; (d) YZ plane

    图  11  CF/PEEK感应焊接接头的断裂形式:(a) 感应元件的内聚破坏;(b) 母材表层的自破坏;(c) 混合破坏;(d) 母材与感应元件的界面破坏

    Figure  11.  Fracture modes of CF/PEEK induction welded joints: (a) Cohesive failure of susceptor; (b) Self failure of base material; (c) Mixed failure; (d) Interface failure

    图  12  四种CF/PEEK感应焊接接头断裂形式的典型微观形貌特征:(a) 感应元件的内聚破坏;(b) 母材表层的自破坏;(c) 混合破坏;(d) 母材与感应元件的界面破坏

    Figure  12.  Typical micro morphologies corresponding to four fracture modes of CF/PEEK induction welded joints: (a) Cohesive failure of susceptor; (b) Self failure of base material; (c) Mixed failure; (d) Interface failure

    表  1  材料电磁性能参数与热物性参数

    Table  1.   Material parameters of electromagnetic performance and thermal property

    Material Density/
    (g·cm −3)
    Thermal conductivity/
    (W·m −1·k −1)
    Specific heat capacity/
    (J·kg −1·K −1)
    Conductivity/
    (S·m −1)
    Relative dielectric constant
    Carbon susceptor 1.53 k x =5.4
    k y =5.4
    k z =0.5
    1088 σ u =4000
    σ v =4000
    σ w =0.33
    3.70
    Base material 1.30 0.25 1387 1×10 −14 4
    Copper 8.70 400 385 6×10 7 1
    下载: 导出CSV

    表  2  CF/PEEK感应焊接接头变形测量结果

    Table  2.   Deformation measurement results of CF/PEEK induction welded joints

    Thickness of susceptor Average
    thickness/mm
    Original
    thickness/mm
    Deformation/
    mm
    0.2 mm 4.325 4.488 −0.163
    0.3 mm 4.338 4.596 −0.268
    0.5 mm 4.410 4.801 −0.361
    下载: 导出CSV

    表  3  CF/PEEK感应焊接接头拉伸剪切强度

    Table  3.   Tensile-shear strength of CF/PEEK induction welded joint

    Thickness of susceptor Average tensile-shear
    strength/MPa
    Standard deviation
    0.2 mm 23.77 1.39
    0.3 mm 16.34 1.20
    0.5 mm 10.31 1.19
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):97-103. doi: 10.3321/j.issn:1000-3851.2007.01.017

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Comositae Sinica,2007,24(1):97-103(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.017
    [2] 刘彬, 安卫龙, 倪楠楠. 国外热塑性复合材料工程应用现状[J]. 航空制造技术, 2021, 64(22):80-90.

    LIU bin, AN Weilong, Ni Nannan. Application status of thermoplastic composite materials in foreign engineering[J]. Aeronautical Manufacturing Technology,2021,64(22):80-90(in Chinese).
    [3] 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4):784-794.

    CHEN Jiping, LI Yan, LIU Weiping, et al. Aerospace development status of continuous fiber-reinforced thermoplastic resin matrix composite material automatic placement and in-situ molding[J]. Acta Materiae Compositae Sinica,2019,36(4):784-794(in Chinese).
    [4] Liu G, Xiong Y, Zhou L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J]. Composites Communications,2021,27:100907. doi: 10.1016/j.coco.2021.100907
    [5] 周利, 秦志伟, 刘杉, 等. 热塑性树脂基复合材料连接技术的研究进展[J]. 材料导报, 2019, 33(19):3177-3183. doi: 10.11896/cldb.18090151

    ZHOU Li, QIN Zhiwei, LIU Shan, et al. Progress on Joining Technology of Thermoplastic Resin Matrix Composites[J]. Materials Review,2019,33(19):3177-3183(in Chinese). doi: 10.11896/cldb.18090151
    [6] PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys-A review[J]. Composites Part A:Applied Science and Manufacturing,2017,101:1-29. doi: 10.1016/j.compositesa.2017.06.007
    [7] 初明越, 阳玉球, 赵德方, 等. 接头尺寸对玻璃纤维/热塑性树脂复合材料机械连接性能的影响[J]. 复合材料学报, 2019, 36(6):1353-1363.

    CHU Mingyue, YANG Yuqiu, ZHAO Defang, et al. Effect of joint dimension on the mechanically fastened joint properties of glass fiber / thermoplastic resin composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1353-1363(in Chinese).
    [8] 陈超. 复合材料连接静动态力学性能实验与数值模拟研究 [D]. 湖南: 湖南大学, 2020.

    Chen Chao. Experimental and numerical study on static and dynamic mechanical properties of composite joint [D]. Hunan: Hunan University, 2020(in Chinese).
    [9] 胡春幸, 侯玉亮, 铁瑛, 等. 不同胶接参数对CFRP层合板单搭胶接结构强度的影响及优化设计[J]. 机械工程学报, 2021, 8:154-165.

    HU Chunxing, HOU Yuliang, TIE Ying, et al. Influence of different bonding parameters on the strength of CFRP laminates with single lap bonding structure and optimization[J]. Journal of Mechanical Engineering,2021,8:154-165(in Chinese).
    [10] WANG F, BU H, MA W, et al. Influence of the different surface treatments on fracture property of CFRP adhesive joint[J]. Journal of Adhesion Science and Technology,2022:1-15.
    [11] COSTA A P, BOTELHO E C, COSTA M L, et al. A review of welding technologies for thermoplastic composites in aerospace applications[J]. Journal of Aerospace Technology and Management,2012,4(3):255-265. doi: 10.5028/jatm.2012.040303912
    [12] 张增焕, 刘红兵. 航空领域热塑性纤维复合材料焊接技术发展研究[J]. 航空制造技术, 2015, 483(14):72-75.

    ZHANG Zenghuan, LIU Hongbing. Research on the development of welding technology of fiber reinforced thermo plastics in the aviation field[J]. Aeronautical Manufacturing Technology,2015,483(14):72-75(in Chinese).
    [13] 袁协尧, 杨洋, 见雪珍, 等. 感应焊接技术在民用飞机热塑性复合材料中的应用[J]. 玻璃钢/复合材料, 2017(5):99-104,127.

    YUAN Xieyao, YANG Yang, JIAN Xuezhen, et al. Application of induction welding technology in thermoplastic composites of civil aircraft[J]. Class fiber Reinforced Plastics/Composite Material,2017(5):99-104,127(in Chinese).
    [14] CHOUDHURY M R, DEBNATH K. A review of the research and advances in electromagnetic joining of fiber-rein-forced thermoplastic composites[J]. Polymer Engineering and Science,2019,59(10):1965-1985. doi: 10.1002/pen.25207
    [15] LIONETTO F, PAPPADÀ S, BUCCOLIERO G, et al. Finite element modeling of continuous induction welding of thermoplastic matrix composites[J]. Materials & Design,2017,120:212-221.
    [16] NELE L, PALMIERI B. Electromagnetic heating for adhesive melting in CFRTP joining: study, analysis, and testing[J]. The International Journal of Advanced Manufacturing Technology,2020,106(11):5317-5331.
    [17] GOUIN O, DUBE M, FERNANDEZV V I. Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes[J]. Journal of Composite Materials,2016,50(21):2895-2910. doi: 10.1177/0021998315614991
    [18] Wang F, Ma W, Zhan X, et al. Comparative study on the morphology and mechanical strength of induction welding joint of polyetheretherketone under different currents[J]. Polymer Engineering & Science,2020,60(11):2908-2917.
    [19] STAVROV D, BERSEE H. Induction welding of thermoplastic composites-an overview[J]. Composites Part A:Applied Science and Manufacturing,2005,36(1):39-54. doi: 10.1016/S1359-835X(04)00182-4
    [20] 王家锋, 苏佳煜, 朱姝, 等. 基于导热板的碳纤维增强聚醚醚酮复合材料感应焊接温度调控[J]. 复合材料学报, 2021, 38(8):2625-2634.

    WANG Jiafeng, SU Jiayu, ZHU Shu, et al. Temperature control for induction welding of carbon fiber reinforced polyethere-therketone (CF/PEEK) composite material via thermal conduction plate[J]. Acta Materiae Comositae Sinica,2021,38(8):2625-2634(in Chinese).
    [21] 陈栋. 碳纤维增强聚苯硫醚复合材料感应焊接技术研究 [D]. 天津: 中国民航大学, 2020.

    CHEN Dong. Research on induction welding technology of carbon fiber reinforced polyphenylene sulfide composite. Tianjin: Civil Aviation University of China, 2020(in Chinese).
    [22] 路鹏程, 李志歆, 邱运朋, 等. 湿热环境对碳纤维增强聚苯硫醚层合板感应焊接接头性能的影响[J]. 复合材料学报, 2021, 38(9):2807-2813.

    LU Pengcheng, LI Zhixin, QIU Yunpeng, et al. Effect of hygrothermal environment on properties of induction welding joint of carbon fiber reinforced polyphenylene sulfide laminate[J]. Acta Materiae Comositae Sinica,2021,38(9):2807-2813(in Chinese).
    [23] MA W, ZHAN X, YANG H, et al. Study on the interface morphology in the induction welding joint of PEEK plate at low power[J]. Journal of Polymer Engineering,2020,40(5):432-439. doi: 10.1515/polyeng-2020-0011
    [24] FARAHANI R D, JANIER M, M DUBÉ. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites[J]. Nanotechnology,2018,29(12):125701. doi: 10.1088/1361-6528/aaa93c
    [25] RUSSELLO M, CATALANOTTI G, HAWKINS S C, et al. Welding of thermoplastics by means of carbon-nanotube web[J]. Composites Communications,2020,17:56-60. doi: 10.1016/j.coco.2019.11.001
    [26] 中国国家标准化管理委员会. 胶粘剂单搭接拉伸剪切强度试验方法(复合材料对复合材料): GB/T 33334—2016 [S]. 北京: 中国标准出版社, 2016.
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 录用日期:  2022-06-03
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-06-27

目录

    /

    返回文章
    返回